Mohapatra Debasis
メンバー加入日: 2022
ブロンズリーグ
1580 ポイント
メンバー加入日: 2022
この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。
このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。
この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。
This course provides an iterative approach to plan, build, launch, and grow a modern, scalable, mature analytics ecosystem and data culture in an organization that consistently achieves established business outcomes. Users will also learn how to design and build a useful, easy-to-use dashboard in Looker. It assumes experience with everything covered in our Getting Started with Looker and Building Reports in Looker courses.
Hands on course covering the main uses of extends and the three primary LookML objects extends are used on as well as some advanced usage of extends.
In this course, we’ll show you how organizations are aligning their BI strategy to most effectively achieve business outcomes with Looker. We'll follow four iterative steps: Plan, Build, Launch, Grow, and provide resources to take into your own services delivery to build Looker with the goal of achieving business outcomes.
By the end of this course, you should be able to articulate Looker's value propositions and what makes it different from other analytics tools in the market. You should also be able to explain how Looker works, and explain the standard components of successful service delivery.
Complete the intermediate Manage Data Models in Looker skill badge course to demonstrate skills in the following: maintaining LookML project health; utilizing SQL runner for data validation; employing LookML best practices; optimizing queries and reports for performance; and implementing persistent derived tables and caching policies.
「Looker での LookML オブジェクトの構築」スキルバッジを獲得できる入門コース を修了すると、 新しいディメンション、メジャー、ビュー、派生テーブルの構築、要件に基づくメジャー フィルタとメジャー タイプの設定、 ディメンションとメジャーの更新、 Explore の構築と改良、ビューと既存の Explore との結合、 ビジネス要件に基づいて作成すべき LookML オブジェクトの決定に関するスキルがあることを証明できます。
In this course, you shadow a series of client meetings led by a Looker Professional Services Consultant.
By the end of this course, you should feel confident employing technical concepts to fulfill business requirements and be familiar with common complex design patterns.
In this course you will discover additional tools for your toolbox for working with complex deployments, building robust solutions, and delivering even more value.
Develop technical skills beyond LookML along with basic administration for optimizing Looker instances
This course reviews the processes for creating table calculations, pivots and visualizations
This course is designed for Looker users who want to create their own ad-hoc reports. It assumes experience of everything covered in our Get Started with Looker course (logging in, finding Looks & dashboards, adjusting filters, and sending data)
In this course you will discover Liquid, the templating language invented by Shopify and explore how it can be used in Looker to create dynamic links, content, formatting, and more.
This course is designed to teach you about roles, permission sets and model sets. These are areas that are used together to manage what users can do and what they can see in Looker.
This course aims to introduce you to the basic concepts of Git: what it is and how it's used in Looker. You will also develop an in-depth knowledge of the caching process on the Looker platform, such as why they are used and why they work
This course provides an introduction to databases and summarized the differences in the main database technologies. This course will also introduce you to Looker and how Looker scales as a modern data platform. In the lessons, you will build and maintain standard Looker data models and establish the foundation necessary to learn Looker's more advanced features.