参加 ログイン

Sharma Mayank

メンバー加入日: 2021

シルバーリーグ

29290 ポイント
Google Cloud で実現する信頼とセキュリティ Earned 7月 7, 2025 EDT
Google Cloud の AI を活用したイノベーション Earned 7月 5, 2025 EDT
生成 AI エージェント: 組織の変革 Earned 6月 22, 2025 EDT
生成 AI アプリ: 働き方を変革する Earned 6月 22, 2025 EDT
生成 AI: 現在の状況を知る Earned 6月 21, 2025 EDT
生成 AI: 基本概念の理解 Earned 6月 20, 2025 EDT
生成 AI: chatbot を超えて Earned 6月 20, 2025 EDT
Contact Center AI: Conversational Design Fundamentals Earned 2月 28, 2024 EST
Launching into Machine Learning - 日本語版 Earned 1月 18, 2024 EST
Google Cloud における AI と ML の概要 Earned 1月 1, 2024 EST
Text Prompt Engineering Techniques Earned 10月 26, 2023 EDT
Implementing Generative AI with Vertex AI Earned 10月 19, 2023 EDT
Search with AI Applications Earned 10月 18, 2023 EDT
Generative AI Explorer : Vertex AI Earned 10月 18, 2023 EDT
画像キャプション モデルの作成 Earned 10月 13, 2023 EDT
責任ある AI: Google Cloud における AI に関する原則の適用 Earned 10月 12, 2023 EDT
Vertex AI Studio の概要 Earned 10月 12, 2023 EDT
Generative AI Fundamentals Earned 8月 20, 2023 EDT
Transformer モデルと BERT モデル Earned 8月 20, 2023 EDT
Encoder-Decoder アーキテクチャ Earned 8月 20, 2023 EDT
アテンション機構 Earned 8月 20, 2023 EDT
画像生成の概要 Earned 8月 20, 2023 EDT
責任ある AI の概要 Earned 8月 20, 2023 EDT
大規模言語モデルの概要 Earned 8月 11, 2023 EDT
生成 AI の概要 Earned 8月 11, 2023 EDT
Migration Summit 2022 Earned 8月 7, 2022 EDT
BigQuery ML を使用した予測モデリング向けのデータ エンジニアリング Earned 8月 3, 2022 EDT
Google Cloud の ML API 用にデータを準備 Earned 7月 27, 2022 EDT
Google Cloud における復元力のあるストリーミング分析システムの構築 Earned 7月 25, 2022 EDT
Compute Engine での Cloud Load Balancing の実装 Earned 7月 21, 2022 EDT
Dataflow を使用したサーバーレスのデータ処理: 基礎 Earned 7月 18, 2022 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud - 日本語版 Earned 7月 18, 2022 EDT
Google Cloud でのバッチデータ パイプラインの構築 Earned 7月 17, 2022 EDT
Google Cloud を使用したデータレイクとデータ ウェアハウスのモダナイゼーション Earned 7月 7, 2022 EDT
Google Cloud Big Data and Machine Learning Fundamentals - 日本語版 Earned 7月 5, 2022 EDT
Google Cloud Operations を使用したスケーリング Earned 5月 27, 2022 EDT
Google Cloud によるインフラストラクチャとアプリケーションのモダナイゼーション Earned 5月 26, 2022 EDT
Google Cloud によるデジタル トランスフォーメーション Earned 5月 26, 2022 EDT
Google Cloud によるデータ トランスフォーメーションの探求 Earned 5月 26, 2022 EDT
Planning for a Google Workspace Deployment - 日本語版 Earned 5月 21, 2022 EDT
Google Workspace のデータ ガバナンス Earned 5月 21, 2022 EDT
Google Workspace のセキュリティ Earned 5月 21, 2022 EDT
Google Workspace コアサービス Earned 5月 21, 2022 EDT
Google Workspace ユーザーおよびリソース管理 Earned 5月 9, 2022 EDT
Google Sheets - Advanced Topics - 日本語版 Earned 5月 9, 2022 EDT
Google Meet - 日本語版 Earned 5月 7, 2022 EDT
Google Slides - 日本語版 Earned 5月 7, 2022 EDT
Google Sheets - 日本語版 Earned 5月 6, 2022 EDT
Google Docs - 日本語版 Earned 5月 6, 2022 EDT
Google Drive - 日本語版 Earned 5月 6, 2022 EDT
Google Calendar - 日本語版 Earned 5月 6, 2022 EDT
Gmail - 日本語版 Earned 5月 6, 2022 EDT
柔軟性のある Google Cloud インフラストラクチャ: スケーリングと自動化 Earned 1月 1, 2022 EST
重要な Google Cloud インフラストラクチャ: コアサービス Earned 12月 24, 2021 EST
重要な Google Cloud インフラストラクチャ: 基礎 Earned 12月 23, 2021 EST
Google Cloud の基礎: コア インフラストラクチャ Earned 12月 17, 2021 EST

組織がデータやアプリケーションをクラウドへ移行する際には、新たなセキュリティ上の課題に対処することが求められます。この「Google Cloud で実現する信頼とセキュリティ」コースでは、クラウド セキュリティの基礎、およびインフラストラクチャ セキュリティに対する Google Cloud のマルチレイヤ型アプローチが持つ価値について学ぶとともに、Google がクラウドへのお客様の信頼をどのように獲得し維持しているのかについて学びます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

AI と ML は、幅広い業種に急速な変革をもたらしているインフォメーション テクノロジーにおける重要な進化です。「Google Cloud の AI を活用したイノベーション」では、AI と ML を活用して組織でビジネス プロセスを変革する方法について学習します。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

「生成 AI エージェント: 組織の変革」は、生成 AI リーダー学習プログラムの最後となる 5 番目のコースです。このコースでは、組織でカスタム生成 AI エージェントを使用して特定のビジネス課題に対処する方法を学習します。基本的な生成 AI エージェントを構築する実践演習を行うとともに、モデル、推論ループ、ツールなどのエージェントの構成要素について見ていきます。

詳細

「生成 AI アプリ: 働き方を変革する」は、生成 AI リーダー学習プログラムの 4 つ目のコースです。このコースでは、Gemini for Workspace や NotebookLM など、Google の生成 AI アプリケーションを紹介します。グラウンディング、検索拡張生成、効果的なプロンプトの作成、自動化されたワークフローの構築などのコンセプトについて学びます。

詳細

「生成 AI: 現在の状況を知る」は、生成 AI リーダー学習プログラムの 3 つ目のコースです。生成 AI は、私たちの働き方や、私たちを取り巻く世界との関わり方を変えています。リーダーは、実際のビジネス成果に結びつけるために、生成 AI の力をどのように活用できるでしょうか?このコースでは、生成 AI ソリューションの構築におけるさまざまなレイヤ、Google Cloud のサービス、ソリューションを選択する際に考慮すべき要素について学びます。

詳細

「生成 AI: 基本概念の理解」は、生成 AI リーダー学習プログラムの 2 つ目のコースです。このコースでは、AI、ML、生成 AI の違いを探り、さまざまなデータタイプが生成 AI によるビジネス課題への対処を可能にする仕組みを理解することで、生成 AI の基本概念を習得します。また、基盤モデルの限界に対処するための Google Cloud の戦略、および責任ある安全な AI の開発と導入における重要な課題に関するインサイトも得られます。

詳細

「生成 AI: chatbot を超えて」は、生成 AI リーダー学習プログラムの最初のコースで、前提条件はありません。このコースは、chatbot の基礎的な理解をさらに広げ、組織で実現できる生成 AI の真の可能性を把握することを目的としています。基盤モデルおよびプロンプト エンジニアリングなど、生成 AI の力を活用するうえで重要な概念も紹介します。また、このコースでは、組織において優れた生成 AI 戦略を策定する場合に検討するべき重要事項も見ていきます。

詳細

Welcome to "CCAI Conversational Design Fundamentals", the first course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to design customer conversational solutions using Contact Center Artificial Intelligence (CCAI). You will be introduced to CCAI and its three pillars (Dialogflow, Agent Assist, and Insights), and the concepts behind conversational experiences and how the study of them influences the design of your virtual agent. After taking this course you will be prepared to take your virtual agent design to the next level of intelligent conversation.

詳細

このコースでは、まず、データ品質を向上させる方法や探索的データ分析を行う方法など、データについての議論から始めます。Vertex AI AutoML について確認し、コードを一切記述せずに ML モデルを構築、トレーニング、デプロイする方法を説明します。また、BigQuery ML のメリットを確認します。その後、ML モデルを最適化する方法、一般化とサンプリングを活用してカスタム トレーニング向けに ML モデルの品質を評価する方法を説明します。

詳細

このコースでは、予測 AI と生成 AI の両方のプロジェクトを構築できる、Google Cloud の AI および機械学習(ML)サービスについて紹介します。AI の基盤、開発、ソリューションを含むデータから AI へのライフサイクル全体で利用可能なテクノロジー、プロダクト、ツールについて説明するとともに、魅力的な学習体験と実践的なハンズオン演習を通じて、データ サイエンティスト、AI 開発者、ML エンジニアの方々がスキルや知識を強化できるようサポートすることを目指しています。

詳細

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

詳細

This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.

詳細

(Previously named "Developing apps with Vertex AI Agent Builder: Search". Please note there maybe instances in this course where previous product names and titles are used) Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use AI Applications to integrate enterprise-grade generative AI search.

詳細

This content is deprecated. Please see the latest version of the course, here.

詳細

このコースでは、ディープ ラーニングを使用して画像キャプション生成モデルを作成する方法について学習します。エンコーダやデコーダなどの画像キャプション生成モデルのさまざまなコンポーネントと、モデルをトレーニングして評価する方法を学びます。このコースを修了すると、独自の画像キャプション生成モデルを作成し、それを使用して画像のキャプションを生成できるようになります。

詳細

企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。

詳細

このコースでは、生成 AI モデルとのやりとり、ビジネス アイデアのプロトタイプ作成、本番環境へのリリースを行うツールである Vertex AI Studio をご紹介します。現実感のあるユースケースや、興味深い講義、ハンズオンラボを通して、プロンプトの作成から成果の実現に至るまでのライフサイクルを詳細に学び、Gemini マルチモーダル アプリケーションの開発、プロンプトの設計、モデルのチューニングに Vertex AI を活用する方法を学習します。Vertex AI Studio を利用することで、生成 AI をプロジェクトに最大限に活かせるようになることを目指します。

詳細

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

詳細

このコースでは、Transformer アーキテクチャと Bidirectional Encoder Representations from Transformers(BERT)モデルの概要について説明します。セルフアテンション機構をはじめとする Transformer アーキテクチャの主要コンポーネントと、それが BERT モデルの構築にどのように使用されているのかについて学習します。さらに、テキスト分類、質問応答、自然言語推論など、BERT を適用可能なその他のタスクについても学習します。このコースの推定所要時間は約 45 分です。

詳細

このコースでは、機械翻訳、テキスト要約、質問応答などのシーケンス ツー シーケンス タスクに対応する、強力かつ広く使用されている ML アーキテクチャである Encoder-Decoder アーキテクチャの概要を説明します。Encoder-Decoder アーキテクチャの主要なコンポーネントと、これらのモデルをトレーニングして提供する方法について学習します。対応するラボのチュートリアルでは、詩を生成するための Encoder-Decoder アーキテクチャの簡単な実装を、TensorFlow で最初からコーディングします。

詳細

このコースでは、アテンション機構について学習します。アテンション機構とは、ニューラル ネットワークに入力配列の重要な部分を認識させるための高度な技術です。アテンションの仕組みと、アテンションを活用して機械翻訳、テキスト要約、質問応答といったさまざまな ML タスクのパフォーマンスを改善する方法を説明します。

詳細

このコースでは拡散モデルについて説明します。拡散モデルは ML モデル ファミリーの一つで、最近、画像生成分野での有望性が示されました。拡散モデルは物理学、特に熱力学からインスピレーションを得ています。ここ数年、拡散モデルは研究と産業界の両方で広まりました。拡散モデルは、Google Cloud の最先端の画像生成モデルやツールの多くを支える技術です。このコースでは、拡散モデルの背景にある理論と、モデルを Vertex AI でトレーニングしてデプロイする方法について説明します。

詳細

この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。

詳細

このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。

詳細

この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。

詳細

The GSI Migration Summit is a curated collection of hands-on labs and quests that provide coverage of application migration. Security and analytics labs and quests have been added to provide coverage of key platform concepts and services.

詳細

BigQuery ML を使用した予測モデリング向けのデータ エンジニアリング」のスキルバッジを獲得できる中級コースを修了すると、 Dataprep by Trifacta を使用した BigQuery へのデータ変換パイプラインの構築、 Cloud Storage、Dataflow、BigQuery を使用した抽出、変換、読み込み(ETL)ワークフローの構築、 BigQuery ML を使用した ML モデルの構築に関するスキルを実証できます。

詳細

「Google Cloud の ML API 用にデータを準備」コースの入門スキルバッジを獲得できるアクティビティを修了すると、 Dataprep by Trifacta を使用したデータのクリーニング、Dataflow でのデータ パイプラインの実行、Dataproc でのクラスタの作成と Apache Spark ジョブの実行、 Cloud Natural Language API、Google Cloud Speech-to-Text API、Video Intelligence API などの ML API の呼び出しに関するスキルを証明できます。

詳細

ストリーミングによって企業が事業運営に関するリアルタイムの指標を取得できるようになり、ストリーミング データの処理を行う機会が増えてきました。このコースでは、Google Cloud でストリーミング データ パイプラインを構築する方法について学習します。受信ストリーミング データの処理のために Pub/Sub について説明します。また、このコースでは、Dataflow を使用してストリーミング データの集計や変換を行う方法、処理済みのレコードを分析用に BigQuery や Bigtable に保存する方法についても説明します。さらに、Qwiklabs を使用して Google Cloud でストリーミング データ パイプラインのコンポーネントを構築する実践演習を行います。

詳細

「b>Compute Engine での Cloud Load Balancing の実装」入門コースを修了してスキルバッジを獲得すると、次のスキルを実証できます: Compute Engine における仮想マシンの作成とデプロイ、 ネットワーク ロードバランサとアプリケーション ロードバランサの構成。

詳細

このコースは、Dataflow を使用したサーバーレスのデータ処理に関する 3 コースシリーズのパート 1 です。この最初のコースでは、始めに Apache Beam とは何か、そして Dataflow とどのように関係しているかを復習します。次に、Apache Beam のビジョンと Beam Portability フレームワークの利点について説明します。Beam Portability フレームワークによって、デベロッパーが好みのプログラミング言語と実行バックエンドを使用できるビジョンが実現します。続いて、Dataflow によってどのように費用を節約しながらコンピューティングとストレージを分離できるか、そして識別ツール、アクセスツール、管理ツールがどのように Dataflow パイプラインと相互に機能するかを紹介します。最後に、Dataflow でそれぞれのユースケースに合った適切なセキュリティ モデルを実装する方法について学習します。

詳細

ML をデータ パイプラインに組み込むと、データから分析情報を抽出する能力を向上できます。このコースでは、Google Cloud でデータ パイプラインに ML を含める複数の方法について説明します。カスタマイズがほとんど、またはまったく必要ない場合のために、このコースでは AutoML について説明します。よりカスタマイズされた ML 機能については、Notebooks と BigQuery の機械学習(BigQuery ML)を紹介します。また、Vertex AI を使用して ML ソリューションを本番環境に導入する方法も説明します。

詳細

通常、データ パイプラインは、「抽出、読み込み(EL)」、「抽出、読み込み、変換(ELT)」、「抽出、変換、読み込み(ETL)」のいずれかの考え方に分類できます。このコースでは、バッチデータではどの枠組みを、どのような場合に使用するのかについて説明します。本コースではさらに、BigQuery、Dataproc 上での Spark の実行、Cloud Data Fusion のパイプラインのグラフ、Dataflow でのサーバーレスのデータ処理など、データ変換用の複数の Google Cloud テクノロジーについて説明します。また、Qwiklabs を使用して Google Cloud でデータ パイプラインのコンポーネントを構築する実践演習を行います。

詳細

すべてのデータ パイプラインには、データレイクとデータ ウェアハウスという 2 つの主要コンポーネントがあります。このコースでは、各ストレージ タイプのユースケースを紹介し、Google Cloud で利用可能なデータレイクとデータ ウェアハウスのソリューションを技術的に詳しく説明します。また、データ エンジニアの役割や、効果的なデータ パイプラインが事業運営にもたらすメリットについて確認し、クラウド環境でデータ エンジニアリングを行うべき理由を説明します。 これは「Data Engineering on Google Cloud」シリーズの最初のコースです。このコースを修了したら、「Google Cloud でのバッチデータ パイプラインの構築」コースに登録してください。

詳細

このコースでは、データから AI へのライフサイクルをサポートする Google Cloud のビッグデータと ML のプロダクトやサービスを紹介します。また、Google Cloud で Vertex AI を使用してビッグデータ パイプラインと ML モデルを作成する際のプロセス、課題、メリットについて説明します。

詳細

あらゆる規模の組織が、事業運営の変革にクラウドの能力と柔軟性を活用しているなかで、クラウド リソースを効果的に管理、スケーリングすることが複雑なタスクになる可能性もあります。 ここでは、Google Cloud Operations を使用したスケーリングを通して、クラウドにおける最新の運用、信頼性、レジリエンスに関する基本的概念と、Google Cloud がこういった取り組みをどのように支援できるのかについて理解を深めます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

多くの従来型企業では、既存のシステムやアプリケーションで昨今の顧客の期待に応え続けることが難しくなっています。この場合、経営者は、老朽化した IT システムの保守を続けるのか、新たな製品やサービスに投資をするのか、選択を迫られることになります。「Google Cloud によるインフラストラクチャとアプリケーションのモダナイゼーション」ではそうした課題を明らかにするとともに、そうした課題をクラウド テクノロジーによって乗り越えるためのソリューションについて学びます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

クラウド テクノロジーとデジタル トランスフォーメーションに大きな期待が寄せられていますが、疑問点も多く残っています。 例: クラウド テクノロジーとは何か?デジタル トランスフォーメーションとは何を意味しているか?クラウド テクノロジーが組織にどう役立つのか?どこから着手するのか? このような疑問をお持ちなら、このコースはぴったりです。このコースでは、デジタル トランスフォーメーションにおいて多くの企業が直面する機会と課題のタイプについてご説明します。このデジタル トランスフォーメーションの入門コースなら、クラウド テクノロジーに関する知識を深めて自分の業務に活用するとともに、今後のビジネスの成長にも役立てていただけます。このコースは クラウド デジタル リーダー 学習プログラムの一部です。

詳細

クラウド テクノロジーは組織に大きな価値をもたらします。クラウド テクノロジーの力をデータと組み合わせることで、その価値はさらに大きなものとなり、新しいカスタマー エクスペリエンスを提供できる可能性があります。「Google Cloud によるデータ トランスフォーメーションの探求」では、データが組織にもたらす価値と、Google Cloud でデータを有用かつアクセス可能なものにする方法を学習します。このコースは「クラウド デジタル リーダー」学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

「Planning for a Google Workspace Deployment」は、「Google Workspace Administration」シリーズの最後のコースです。 このコースでは、Google の導入方法とベスト プラクティスについて説明します。Cymbal で Google Workspace の導入を計画している Katelyn と Marcus の例を見ていきます。プロビジョニング、メールフロー、データ移行、併用といった核となる技術プロジェクト分野に焦点を当て、各分野に最適な導入戦略を検討します。 また、Google Workspace の導入におけるチェンジ マネジメントの重要性についても説明します。チェンジ マネジメントにより、ユーザーは Google Workspace にスムーズに移行できるようになり、コミュニケーション、サポート、トレーニングを通じて働き方の変革のメリットを得ることができます。 このコースでは、理論的なトピックを取り上げます。実践的な演習は行いません。Google Workspace のトライアルをまだキャンセルしていない場合は、今すぐ行い、不要な料金が発生しないようにしてください。

詳細

このコースでは、Google Workspace 環境内のデータを管理するためのスキルを身に付けます。まず、Gmail とドライブのデータ漏洩を防止するデータ損失防止(DLP)ルールについて確認します。その後、Google Vault を使用してデータを保持、保存、取得する方法を学習します。次に、規制を遵守するように、データ リージョンおよびエクスポート設定を構成する方法を学びます。最後に、組織とセキュリティを強化するために、ラベルを使用してデータを分類する方法を確認します。

詳細

このコースを受講すると、Google Workspace 環境のセキュリティを確保できるようになります。まず、ユーザー アクセスを制御する強力なパスワード ポリシーと 2 段階認証プロセスを実装します。その後、セキュリティ調査ツールを利用して、セキュリティ リスクを事前に特定し、対処します。次に、サードパーティ製アプリへのアクセスとモバイル デバイスを管理し、セキュリティを確保します。最後に、メール セキュリティとコンプライアンス対策を適用して、組織データを保護します。

詳細

このコースは、Google Workspace コアサービスを包括的に理解することを目的としたものです。このコースでは、Gmail、カレンダー、ドライブ、Meet、Chat、ドキュメントなどのサービスに関する設定の有効化、無効化、構成について学びます。次に、ユーザーを支援するために Gemini をデプロイして管理する方法を学びます。最後に、タスクの自動化や Google Workspace アプリケーションの機能拡張を目的とした AppSheet や Apps Script のユースケースを確認します。

詳細

このコースでは、Google Workspace におけるユーザーおよびリソース管理の基礎を学びます。組織のニーズに応じた組織部門の構成方法や、さまざまな種類の Google グループの管理方法、ドメイン設定の管理方法についての理解を深め、最終的には Google Workspace 環境におけるリソースの最適化と構造化に関するスキルを習得します。

詳細

Google スプレッドシートの中級コースは、初級のコースで説明されたコンセプトを元に進められます。 このコースでは、Google スプレッドシートでテーマを適用してカスタマイズする方法を学習し、条件付き書式のオプションを確認します。 Google スプレッドシートの高度な数式と関数をいくつか学習します。関数を使用した数式を作成する方法を確認し、さらに Google スプレッドシート内のデータを参照して検証する方法を学びます。 スプレッドシートには、何百万という数、数式、テキストを入力しておくことができます。このようなデータは要約や可視化を行わないと、十全に活用することが難しい場合があります。このコースでは、グラフやピボット テーブルなど、Google スプレッドシートのデータ可視化オプションを確認します。 Google フォームは、データを収集して迅速なデータ分析を可能にするオンライン アンケートです。フォームで収集したデータをスプレッドシートに接続する作業や、既存のスプレッドシートからフォームを作成する作業を通じて、フォームとスプレッドシートがどのように連携するのかを確認します。

詳細

このコースでは、Google Workspace に付属する Google のビデオ会議ソフトウェアである Google Meet について紹介します。 Google Meet を使ってビデオ会議を作成し、管理する方法について説明します。Google Meet を開き、ビデオ会議にユーザーを追加するさまざまな方法について確認します。カレンダーの予定や会議リンクなど、さまざまなソースから会議に参加する方法についても説明します。 Google Meet を使用して、チームがどこにいても、コミュニケーション、意見の交換、リソースの共有をより適切に行う方法について説明します。ニーズに合わせて Google Meet 環境をカスタマイズする方法や、ビデオ会議中にチャット メッセージを効率的に使う方法について説明します。また、カレンダーの招待状や添付ファイルを使うなど、リソースを共有するさまざまな方法について確認します。 Google Meet の主催者用ボタンを使って参加者を管理し、インタラクティブな管理機能を利用する方法について説明します。ビデオ会議の録画やライブ ストリーミングを行う方法についても説明します。

詳細

Google スライドを使用すると、営業用、プロジェクト用、トレーニング モジュール用にプロフェッショナルなプレゼンテーションを作成して提示できます。 Google スライドのプレゼンテーションは、クラウドに安全に保存されます。プレゼンテーションはウェブブラウザで直接作成でき、特別なソフトウェアは必要ありません。 さらに、複数のユーザーが同時に作業することができ、他のユーザーの変更内容をリアルタイムで見ることもできます。変更はすべて自動的に保存されます。このコースでは、Google スライドを開いて空のプレゼンテーションを作成する方法と、テンプレートからプレゼンテーションを作成する方法を学習します。プレゼンテーションのテーマやレイアウトのオプション、コンテンツとスピーカーノートの追加や書式設定の方法について学びます。表、画像、グラフなどを追加してスライドを充実させる方法を学習します。また、スライドの切り替え効果やオブジェクトのアニメーションなどの視覚効果をプレゼンテーションで使用する方法についても学びます。スライドを整理する方法について説明し、スライドの複製と順序付け、既存のスライドのインポート、スライドのコピー、スライドの非表示などのオプションを確認します。プレゼンテーションを他のユーザーと共有する方法のほか、共同編集者の権限、変更履歴、バージョン管理についても学習します。Google スライドには、チームの共同編集を容易にするさまざまな機能が用意されています。チームでの共同編集にコメントとアクション アイテムを活用する方法を学習します。 スライドを提示することが最終的な目標であるため、スライドを他の人にプレゼンテーションする方法や、利用可能なプレゼンテーション ツールについて学習します。

詳細

このコースでは、Google スプレッドシートを紹介します。Google スプレッドシートはクラウドベースのスプレッドシート ソフトウェアで、 Google Workspace に含まれています。 Google スプレッドシートでは、ウェブブラウザで直接スプレッドシートを作成して編集できます。特別なソフトウェアは必要ありません。 複数のユーザーが同時に編集することも、他のユーザーの変更内容をリアルタイムで見ることもできます。また、変更はすべて自動的に保存されます。 このコースでは、Google スプレッドシートを開いて空のスプレッドシートを作成する方法、テンプレートからスプレッドシートを作成する方法を学習します。また、Google スプレッドシートを使用してデータの追加、インポート、並べ替え、フィルタリング、書式設定を行い、さまざまな種類のファイルで作業する方法も学習します。 数式と関数を使用すると、すばやく計算を行ってデータをより有効に活用できます。このコースでは、基本的な数式を作成する方法、関数を使用する方法、データを参照する方法について見ていきます。スプレッドシートにグラフを追加する方法も学習します。 Google スプレッドシートは簡単に共有できます。このコースでは、他のユーザーとスプレッドシートを共有するさまざまな方法を見ていきます。また、変更を追跡し、Google スプレッドシートのバージョンを管理する方法についても説明します。 Google Workspace を使用すれば、チーム、クライアント、他のユーザーがどこにいても、簡単に共同編集を行うことができます。Google スプレッドシートで利用できる共同編集オプションについてもいくつか紹介します。これらのオプションには、コメント、アクション アイテム、通知などがあります。

詳細

Google ドキュメントを使用すると、ドキュメントがクラウドに保存され、任意のパソコンまたはデバイスからアクセスできます。ウェブブラウザでドキュメントを作成および編集できます。特別なソフトウェアは必要ありません。さらに、複数のユーザーが同時に作業することができ、ユーザーが変更を行ったときにその変更を確認することも可能です。各変更は自動的に保存されます。 このコースでは、Google ドキュメントの開き方、新しいドキュメントの作成と書式設定の方法、新しいドキュメントへのテンプレートの適用方法について説明します。 目次、ヘッダーとフッター、表、図、画像などを使用してドキュメントの質を高める方法を説明します。 ドキュメントを他のユーザーと共有する方法について説明します。共有オプションのほか、共同編集者のロールと権限を確認します。ドキュメントのバージョンを管理する方法について説明します。 Google ドキュメントを使用すると、同じドキュメントで他のユーザーとリアルタイムで共同作業できます。ドキュメント内のコメントとアクション アイテムを作成、管理する方法について説明します。 複数の Google ドキュメント ツールを確認します。自分のスタイルに合わせて環境設定を行う方法を理解し、Google Explore などのツールを使用してコンテンツの価値を高める方法を検討します。

詳細

Google ドライブは Google のクラウドベースのファイル ストレージ サービスです。Google ドライブでは、すべての作業を 1 か所にまとめ、追加のソフトウェアを必要とせずにさまざまなファイル形式を表示でき、どのデバイスからでもファイルにアクセスできます。 このコースでは、Google ドライブの操作方法を学びます。ファイルやフォルダをアップロードする方法や、ファイルの種類に関係なく作業する方法のほか、Google ドライブでファイルを簡単に表示、配置、整理、変更、削除する方法についても学びます。 Google ドライブには共有ドライブが含まれています。共有ドライブを使用して、チームでファイルを保存したり、検索したり、ファイルにアクセスしたりできます。新しい共有ドライブの作成、メンバーの追加と管理、共有ドライブのコンテンツの管理などの方法を学びます。 Google Workspace とはつまり、コラボレーションと共有機能そのものです。Google ドライブで利用できる共有オプションを確認し、さまざまなユーザー ロールや割り当て可能な権限について学びます。 また、テンプレートを使用して一貫性を確保し、時間を節約する方法についても確認します。 Google ドライブには、さまざまなツールやオプションが用意されています。このコースでは、それらのオプションの中から、オフラインで作業する方法、ドライブ ファイル ストリームを使用する方法、Google Workspace Marketplace からアプリをインストールする方法について説明します。

詳細

Google カレンダーを使用すると、会議や予定のスケジュールを設定することや、今後のアクティビティに関するリマインダーを受信することが簡単にでき、今後の予定を常に把握することができます。Google カレンダーはチーム向けに設計されているため、スケジュールを他のユーザーと共有することや、複数の共用カレンダーを作成してチームで使用することが簡単にできます。 このコースでは、Google カレンダーの予定を作成して管理する方法(既存の予定の更新、予定の削除と復元、カレンダーの検索)を学びます。 リマインダー、タスク、予約枠など、さまざまな種類の予定をどのようなときに使うのかを理解できるようになります。 自分の作業のやり方に合わせてカスタマイズ可能な Google カレンダーの設定について詳しく見ていきます。 追加のカレンダーを作成する方法、他のユーザーとカレンダーを共有する方法、組織内の他のカレンダーにアクセスする方法も学びます。

詳細

Gmail は Google のクラウドベースのメールサービスです。ウェブブラウザだけであらゆるパソコンやデバイスからメッセージにアクセスできます。 このコースでは、メッセージの作成、送信、返信方法について学習します。また、Gmail メッセージに適用できるいくつかの一般的な操作についても説明し、Gmail のラベルを使用してメールを整理する方法を学習します。 一般的な Gmail の設定と機能について説明します。たとえば、個人の連絡先やグループを管理する方法、Gmail の受信トレイを自分の作業の進め方に合わせてカスタマイズする方法、独自のメール署名とテンプレートを作成する方法について学習します。 Google は検索で有名です。Gmail にも強力な検索機能とフィルタ機能が含まれています。Gmail の高度な検索機能を使用して、メッセージを自動的にフィルタする方法を学習します。

詳細

このオンデマンド速習コースでは、Google Cloud が提供する包括的で柔軟なインフラストラクチャとプラットフォーム サービスについて紹介します。動画講義、デモ、ハンズオンラボを通してさまざまなソリューションの要素について学び、実際にデプロイしてみます。これにはセキュリティを維持しながらネットワークを相互接続する方法や、ロード バランシング、自動スケーリング、インフラストラクチャの自動化、マネージド サービスも含まれます。

詳細

このオンデマンド速習コースでは、Google Cloud で提供される包括的かつ柔軟なインフラストラクチャとプラットフォームのサービスについて、Compute Engine を中心に紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してソリューションの各要素について学習し、演習を行います。これらの要素には、ネットワーク、システム、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。また、実践的なソリューションの実装も取り上げ、顧客指定の暗号鍵、セキュリティとアクセス管理、割り当てと課金、リソース モニタリングなどについても学習します。

詳細

このオンデマンド速習コースでは、Google Cloud で提供される包括的かつ柔軟なインフラストラクチャとプラットフォームのサービスについて、Compute Engine を中心に紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してさまざまなソリューションの各要素について学習し、実際のデプロイを演習します。これらの要素には、ネットワークや仮想マシン、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。コンソールと Cloud Shell を使用して Google Cloud を運用する方法についても学習します。また、クラウド アーキテクトの役割、インフラストラクチャ設計の方法、Virtual Private Cloud(VPC)を使用した仮想ネットワークの構成、プロジェクト、ネットワーク、サブネットワーク、IP アドレス、ルート、ファイアウォール ルールについても学習します。

詳細

Google Cloud の基礎: コア インストラクチャ では、Google Cloud に関する重要なコンセプトと用語について説明します。このコースでは動画とハンズオンラボを通じて学習を進めていきます。Google Cloud の多数のコンピューティング サービスとストレージ サービス、そしてリソースとポリシーを管理するための重要なツールについて比較しながら説明します。

詳細