Pamungkas Tri Bagus
メンバー加入日: 2023
シルバーリーグ
41514 ポイント
メンバー加入日: 2023
「Google Cloud のネットワーキング」シリーズの 4 番目のコース「ネットワーク セキュリティ」へようこそ。 このコースでは、Google Cloud ネットワーク インフラストラクチャを保護するためのサービスについて詳しく学びます。 最初のモジュールである「分散型サービス拒否攻撃(DDoS)からの保護」では、分散型サービス拒否攻撃(DDoS)に対してネットワークを強化し、中断のないサービスの可用性を確保する方法について説明します。 2 番目のモジュールである「VPC ネットワークへのアクセス制御」では、ネットワーク アクセス制御を学習し、誰がどのようにリソースにアクセスできるかについての権限を定義できるようにします。 最後に、3 番目のモジュールである「高度なセキュリティのモニタリングと分析」では、潜在的な脅威をプロアクティブに検出して対応し、Google Cloud 環境の安全性と復元力を維持する方法を検討します。 このコースを終えると、Google Cloud ネットワーク セキュリティについて包括的に理解できるようになります。
このコースでは、Google Cloud サービス全体で脅威の防止、検出、対応ができるよう組織をサポートする、クラウドネイティブ アプリケーション保護プラットフォーム(CNAPP)ソリューションである Google Cloud Security Command Center(SCC)Enterprise の概要を説明します。 受講していただくと、強化された脅威検出、徹底的な脆弱性管理、統合されたケース管理といった SCC Enterprise のコア機能を学べます。 また、脅威管理と脆弱性評価の基本的なコンセプトについても解説するとともに、ご自身のマルチクラウド環境で SCC Enterprise を使用してセキュリティ リスクを特定、調査、修復する方法を学べる実践的なデモもご用意しています。
This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.
このコースでは、ディープ ラーニングを使用して画像キャプション生成モデルを作成する方法について学習します。エンコーダやデコーダなどの画像キャプション生成モデルのさまざまなコンポーネントと、モデルをトレーニングして評価する方法を学びます。このコースを修了すると、独自の画像キャプション生成モデルを作成し、それを使用して画像のキャプションを生成できるようになります。
このコースでは拡散モデルについて説明します。拡散モデルは ML モデル ファミリーの一つで、最近、画像生成分野での有望性が示されました。拡散モデルは物理学、特に熱力学からインスピレーションを得ています。ここ数年、拡散モデルは研究と産業界の両方で広まりました。拡散モデルは、Google Cloud の最先端の画像生成モデルやツールの多くを支える技術です。このコースでは、拡散モデルの背景にある理論と、モデルを Vertex AI でトレーニングしてデプロイする方法について説明します。
このコースでは、Transformer アーキテクチャと Bidirectional Encoder Representations from Transformers(BERT)モデルの概要について説明します。セルフアテンション機構をはじめとする Transformer アーキテクチャの主要コンポーネントと、それが BERT モデルの構築にどのように使用されているのかについて学習します。さらに、テキスト分類、質問応答、自然言語推論など、BERT を適用可能なその他のタスクについても学習します。このコースの推定所要時間は約 45 分です。
このコースでは、機械翻訳、テキスト要約、質問応答などのシーケンス ツー シーケンス タスクに対応する、強力かつ広く使用されている ML アーキテクチャである Encoder-Decoder アーキテクチャの概要を説明します。Encoder-Decoder アーキテクチャの主要なコンポーネントと、これらのモデルをトレーニングして提供する方法について学習します。対応するラボのチュートリアルでは、詩を生成するための Encoder-Decoder アーキテクチャの簡単な実装を、TensorFlow で最初からコーディングします。
このコースでは、アテンション機構について学習します。アテンション機構とは、ニューラル ネットワークに入力配列の重要な部分を認識させるための高度な技術です。アテンションの仕組みと、アテンションを活用して機械翻訳、テキスト要約、質問応答といったさまざまな ML タスクのパフォーマンスを改善する方法を説明します。
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.
このコースでは、生成 AI モデルとのやりとり、ビジネス アイデアのプロトタイプ作成、本番環境へのリリースを行うツールである Vertex AI Studio をご紹介します。現実感のあるユースケースや、興味深い講義、ハンズオンラボを通して、プロンプトの作成から成果の実現に至るまでのライフサイクルを詳細に学び、Gemini マルチモーダル アプリケーションの開発、プロンプトの設計、モデルのチューニングに Vertex AI を活用する方法を学習します。Vertex AI Studio を利用することで、生成 AI をプロジェクトに最大限に活かせるようになることを目指します。
「Vertex AI におけるプロンプト設計」スキルバッジを獲得できる入門コースを修了すると、 Vertex AI のプロンプト エンジニアリング、画像分析、マルチモーダル生成手法のスキルを実証できます。効果的なプロンプトを作成する方法、目的どおりの生成 AI 出力を生成する方法、 Gemini モデルを実際のマーケティング シナリオに適用する方法を学びます。
企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。
この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。
A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.
「Google Cloud における Terraform を使用したインフラストラクチャの構築」の中級スキルバッジを獲得すると、 Terraform を使用した Infrastructure as Code(IaC)の原則、Terraform 構成を使用した Google Cloud リソースのプロビジョニングと管理、 状態の効果的な管理(ローカルおよびリモート)、組織内での再利用性を念頭に置いた Terraform コードのモジュール化といったスキルを実証できます。
「Google Cloud ネットワークの構築」コースを修了してスキルバッジを獲得しましょう。このコースでは、 アプリケーションをデプロイしてモニタリングするための複数の方法について学びます。具体的には、IAM ロールの確認とプロジェクト アクセスの追加 / 削除、 VPC ネットワークの作成、Compute Engine VM のデプロイとモニタリング、 SQL クエリの記述、Compute Engine での VM のデプロイとモニタリング、Kubernetes を使用した複数のデプロイ アプローチによるアプリケーションのデプロイなどです。
「Google Cloud におけるアプリ開発環境の設定」コースを完了すると、スキルバッジを獲得できます。このコースでは、 Cloud Storage、Identity and Access Management、Cloud Functions、Pub/Sub のテクノロジーの基本機能を使用して、ストレージ中心のクラウド インフラストラクチャを構築し接続する方法を学びます。
このコースでは、Google Cloud 向けに Terraform を使用する方法の概要を説明します。このコースを受講すると、Terraform を使用して Infrastructure as Code を実装し、その主要な特性と機能を使って Google Cloud インフラストラクチャを作成および管理する方法について説明できるようになります。 また、Terraform を使用して Google Cloud のリソースを構築、管理する実践的な演習を受けられます。
このコースでは、Google Cloud のインフラストラクチャとアプリケーションのパフォーマンスをモニタリングして改善するための手法を学びます。 プレゼンテーション、デモ、ハンズオンラボ、実際の事例紹介を組み合わせて活用することにより、フルスタック モニタリング、リアルタイムでのログ管理と分析、本番環境でのコードのデバッグ、アプリケーション パフォーマンスのボトルネックのトレース、CPU とメモリ使用量のプロファイリングに関する経験を積むことができます。
このコースでは、Kubernetes と Google Kubernetes Engine(GKE)のセキュリティについて、およびロギングとモニタリングについて学びます。また、Google Cloud マネージド ストレージ サービスとデータベース サービスを GKE 内で使用する方法についても学びます。 これは「Google Kubernetes Engine を使用した構築」シリーズの 2 つ目のコースです。このコースを修了したら、「信頼性に優れた Google Cloud インフラストラクチャ: 設計とプロセス」コースか、「Hybrid Cloud Infrastructure Foundations with Anthos」コースに登録してください。
「Google Kubernetes Engine を使用した構築: ワークロード」を履修することで、クラウドネイティブ アプリケーション開発のすべてを網羅した取り組みに着手することができるようになります。学習体験全体を通して、Kubernetes オペレーション、デプロイ管理、GKE ネットワーキング、永続ストレージについて詳しく学びます。 これは「Google Kubernetes Engine を使用した構築」シリーズの最初のコースです。このコースを修了したら、「Google Kubernetes Engine を使用した構築: 実践」コースに登録してください。
このコース「Google Kubernetes Engine を使用した構築: 基礎」では、Google Cloud の全体像と基本的な考え方を確認した後、ソフトウェア コンテナを作成して管理する方法と Kubernetes のアーキテクチャについて説明します。
このコースでは、Associate Cloud Engineer 認定試験の合格を目指す方が受験の準備を進めることができます。試験範囲に含まれる Google Cloud ドメインの概要と、ドメインに関する知識を高めるための学習計画の作成方法について学習します。
「Google Kubernetes Engine を使ってみる」コースへようこそ。Kubernetes にご興味をお持ちいただきありがとうございます。Kubernetes は、アプリケーションとハードウェア インフラストラクチャとの間にあるソフトウェア レイヤです。Google Kubernetes Engine は、Google Cloud 上のマネージド サービスとしての Kubernetes を提供します。 このコースでは、Google Kubernetes Engine(一般に GKE と呼ばれています)の基礎と、Google Cloud でアプリケーションをコンテナ化して実行する方法を学びます。このコースでは、まず Google Cloud の基本事項を確認します。続けて、コンテナ、Kubernetes、Kubernetes アーキテクチャ、Kubernetes オペレーションの概要について学びます。
このコースでは、Google Workspace におけるユーザーおよびリソース管理の基礎を学びます。組織のニーズに応じた組織部門の構成方法や、さまざまな種類の Google グループの管理方法、ドメイン設定の管理方法についての理解を深め、最終的には Google Workspace 環境におけるリソースの最適化と構造化に関するスキルを習得します。
このオンデマンド速習コースでは、Google Cloud が提供する包括的で柔軟なインフラストラクチャとプラットフォーム サービスについて紹介します。動画講義、デモ、ハンズオンラボを通してさまざまなソリューションの要素について学び、実際にデプロイしてみます。これにはセキュリティを維持しながらネットワークを相互接続する方法や、ロード バランシング、自動スケーリング、インフラストラクチャの自動化、マネージド サービスも含まれます。
このオンデマンド速習コースでは、Google Cloud で提供される包括的かつ柔軟なインフラストラクチャとプラットフォームのサービスについて、Compute Engine を中心に紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してソリューションの各要素について学習し、演習を行います。これらの要素には、ネットワーク、システム、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。また、実践的なソリューションの実装も取り上げ、顧客指定の暗号鍵、セキュリティとアクセス管理、割り当てと課金、リソース モニタリングなどについても学習します。
このオンデマンド速習コースでは、Google Cloud で提供される包括的かつ柔軟なインフラストラクチャとプラットフォームのサービスについて、Compute Engine を中心に紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してさまざまなソリューションの各要素について学習し、実際のデプロイを演習します。これらの要素には、ネットワークや仮想マシン、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。コンソールと Cloud Shell を使用して Google Cloud を運用する方法についても学習します。また、クラウド アーキテクトの役割、インフラストラクチャ設計の方法、Virtual Private Cloud(VPC)を使用した仮想ネットワークの構成、プロジェクト、ネットワーク、サブネットワーク、IP アドレス、ルート、ファイアウォール ルールについても学習します。
Google Cloud の基礎: コア インストラクチャ では、Google Cloud に関する重要なコンセプトと用語について説明します。このコースでは動画とハンズオンラボを通じて学習を進めていきます。Google Cloud の多数のコンピューティング サービスとストレージ サービス、そしてリソースとポリシーを管理するための重要なツールについて比較しながら説明します。
In this course you will learn the fundamentals of no-code app development and recognize use cases for no-code apps. The course provides an overview of the AppSheet no-code app development platform and its capabilities. You learn how to create an app with data from spreadsheets, create the app’s user experience using AppSheet views and publish the app to end users.
In this course, you learn how to design APIs, and how to use OpenAPI specifications to document them. You learn about the API life cycle, and how the Apigee API platform helps you manage all aspects of the life cycle. You learn about how APIs can be designed using API proxies, and how APIs are packaged as API products to be used by app developers. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to design, build, secure, deploy, and manage API solutions using Google Cloud's Apigee API Platform. This is the first course of the Developing APIs with Google Cloud's Apigee API Platform series. After completing this course, enroll in the API Security on Google Cloud's Apigee API Platform course.
In this course, you learn how to create APIs that utilize multiple services and how you can use custom code on Apigee. You will also learn about fault handling, and how to share logic between proxies. You learn about traffic management and caching. You also create a developer portal, and publish your API to the portal. You learn about logging and analytics, as well as CI/CD and the different deployment models supported by Apigee. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to design, build, secure, deploy, and manage API solutions using Google Cloud's Apigee API Platform.This is the third and final course of the Developing APIs with Google Cloud's Apigee API Platform course series.
Google Cloud Computing Foundations コースでは、クラウド コンピューティングの 知識または経験がほとんどあるいはまったくない受講者に、クラウドの基礎、ビッグ データ、機械学習を網羅したコンセプトの概要と、Google Cloud がどこで、どのよう に役立つかについて詳しく説明します。 受講者はコースを修了するまでに、クラウド コンピューティング、ビッグデータ、 機械学習に関連するコンセプトを明確に説明したり、いくつかの実践的スキルを実証し たりできるようになっているはずです。 このコースは、Google Cloud Computing Foundations という一連のコースの一部です。 コースは次の順序で受講してください: Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud - Locales この 3 番目のコースでは、安全なネットワークを構築する方法、 およびクラウドの自動化と管理ツールについて説明します。
Google Cloud Computing Foundations コースでは、クラウド コンピューティングの 知識または経験がほとんどあるいはまったくない受講者に、クラウドの基礎、ビッグ データ、機械学習を網羅したコンセプトの概要と、Google Cloud がどこで、どのよう に役立つかについて詳しく説明します。 受講者はコースを修了するまでに、クラウド コンピューティング、ビッグデータ、 機械学習に関連するコンセプトを明確に説明したり、いくつかの実践的スキルを実証し たりできるようになっているはずです。 このコースは、Google Cloud Computing Foundations という一連のコースの一部です。 コースは次の順序で受講してください: Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud - Locales この 2 番目のコースでは、ストレージ モデルの実装、さまざまなアプリケーション マネージド サービス オプション、GoogleCloudでのセキュリティ管理について説明します。
「b>Compute Engine での Cloud Load Balancing の実装」入門コースを修了してスキルバッジを獲得すると、次のスキルを実証できます: Compute Engine における仮想マシンの作成とデプロイ、 ネットワーク ロードバランサとアプリケーション ロードバランサの構成。
Google Cloud Computing Foundations コースでは、クラウド コンピューティングの知識または経験がほとんどあるいはまったくない受講者に、 クラウドの基礎、ビッグデータ、機械学習を網羅したコンセプトの概要と、Google Cloud がどこで、どのように役立つかについて詳しく説明します。 最初にクラウド コンピューティングの概要を確認してから、クラウド·コンピューティング·インフラストラクチャと、ビッグデータおよび機械学習の 2 つの分野を詳しく見ていきます。 受講者はコースを修了するまでに、クラウド コンピューティング、ビッグデータ、機械学習に関連するコンセプトを明確に説明したり、 いくつかの実践的スキルを実証したりできるようになっているはずです。 このコースは、Google Cloud Computing Foundations という一連のコースの一部です。 コースは次の順序で受講してください: Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud - Locales この最初のコースでは、クラウド コンピューティングの概要、Google Cloud の使用方法、さまざまなコンピューティング オプションについて説明します。
あらゆる規模の組織が、事業運営の変革にクラウドの能力と柔軟性を活用しているなかで、クラウド リソースを効果的に管理、スケーリングすることが複雑なタスクになる可能性もあります。 ここでは、Google Cloud Operations を使用したスケーリングを通して、クラウドにおける最新の運用、信頼性、レジリエンスに関する基本的概念と、Google Cloud がこういった取り組みをどのように支援できるのかについて理解を深めます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。
多くの従来型企業では、既存のシステムやアプリケーションで昨今の顧客の期待に応え続けることが難しくなっています。この場合、経営者は、老朽化した IT システムの保守を続けるのか、新たな製品やサービスに投資をするのか、選択を迫られることになります。「Google Cloud によるインフラストラクチャとアプリケーションのモダナイゼーション」ではそうした課題を明らかにするとともに、そうした課題をクラウド テクノロジーによって乗り越えるためのソリューションについて学びます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。
クラウド テクノロジーは組織に大きな価値をもたらします。クラウド テクノロジーの力をデータと組み合わせることで、その価値はさらに大きなものとなり、新しいカスタマー エクスペリエンスを提供できる可能性があります。「Google Cloud によるデータ トランスフォーメーションの探求」では、データが組織にもたらす価値と、Google Cloud でデータを有用かつアクセス可能なものにする方法を学習します。このコースは「クラウド デジタル リーダー」学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。
クラウド テクノロジーとデジタル トランスフォーメーションに大きな期待が寄せられていますが、疑問点も多く残っています。 例: クラウド テクノロジーとは何か?デジタル トランスフォーメーションとは何を意味しているか?クラウド テクノロジーが組織にどう役立つのか?どこから着手するのか? このような疑問をお持ちなら、このコースはぴったりです。このコースでは、デジタル トランスフォーメーションにおいて多くの企業が直面する機会と課題のタイプについてご説明します。このデジタル トランスフォーメーションの入門コースなら、クラウド テクノロジーに関する知識を深めて自分の業務に活用するとともに、今後のビジネスの成長にも役立てていただけます。このコースは クラウド デジタル リーダー 学習プログラムの一部です。