参加 ログイン

Aldana Richard

メンバー加入日: 2018

ゴールドリーグ

37965 ポイント
生成 AI: 基本概念の理解 Earned 6月 18, 2025 EDT
生成 AI: chatbot を超えて Earned 6月 12, 2025 EDT
Gemini と Streamlit を使用した生成 AI アプリの開発 Earned 6月 12, 2025 EDT
エンドツーエンドの SDLC のための Gemini Earned 6月 7, 2025 EDT
DevOps エンジニア向けの Gemini Earned 6月 7, 2025 EDT
セキュリティ エンジニア向けの Gemini Earned 6月 7, 2025 EDT
ネットワーク エンジニア向けの Gemini Earned 6月 7, 2025 EDT
データ サイエンティストとアナリスト向けの Gemini Earned 6月 7, 2025 EDT
アプリケーション開発者向けの Gemini Earned 6月 3, 2025 EDT
クラウド アーキテクト向けの Gemini Earned 5月 23, 2025 EDT
Delivery Navigator for Partners Earned 11月 17, 2024 EST
Vertex AI Studio の概要 Earned 2月 29, 2024 EST
画像生成の概要 Earned 2月 27, 2024 EST
Generative AI Explorer : Vertex AI Earned 2月 27, 2024 EST
責任ある AI: Google Cloud における AI に関する原則の適用 Earned 2月 27, 2024 EST
Generative AI Fundamentals Earned 2月 27, 2024 EST
責任ある AI の概要 Earned 2月 27, 2024 EST
大規模言語モデルの概要 Earned 2月 27, 2024 EST
Generative AI for Business Leaders Earned 2月 26, 2024 EST
生成 AI の概要 Earned 2月 10, 2024 EST
Cloud Foundations: Customer Onboarding Best Practices Earned 7月 14, 2023 EDT
Google Cloud で Terraform を使ってみる Earned 4月 18, 2023 EDT
Google Cloud ネットワークの構築 Earned 4月 24, 2022 EDT
Compute Engine での Cloud Load Balancing の実装 Earned 4月 24, 2022 EDT
Google Cloud におけるアプリ開発環境の設定 Earned 4月 24, 2022 EDT
柔軟性のある Google Cloud インフラストラクチャ: スケーリングと自動化 Earned 3月 22, 2022 EDT
Google Cloud の基礎: コア インフラストラクチャ Earned 3月 18, 2022 EDT
重要な Google Cloud インフラストラクチャ: コアサービス Earned 9月 27, 2021 EDT
重要な Google Cloud インフラストラクチャ: 基礎 Earned 9月 26, 2021 EDT
Google Cloud Essentials Earned 10月 9, 2019 EDT

「生成 AI: 基本概念の理解」は、生成 AI リーダー学習プログラムの 2 つ目のコースです。このコースでは、AI、ML、生成 AI の違いを探り、さまざまなデータタイプが生成 AI によるビジネス課題への対処を可能にする仕組みを理解することで、生成 AI の基本概念を習得します。また、基盤モデルの限界に対処するための Google Cloud の戦略、および責任ある安全な AI の開発と導入における重要な課題に関するインサイトも得られます。

詳細

「生成 AI: chatbot を超えて」は、生成 AI リーダー学習プログラムの最初のコースで、前提条件はありません。このコースは、chatbot の基礎的な理解をさらに広げ、組織で実現できる生成 AI の真の可能性を把握することを目的としています。基盤モデルおよびプロンプト エンジニアリングなど、生成 AI の力を活用するうえで重要な概念も紹介します。また、このコースでは、組織において優れた生成 AI 戦略を策定する場合に検討するべき重要事項も見ていきます。

詳細

「Gemini と Streamlit を使用した生成 AI アプリの開発」の中級スキルバッジを獲得すると、 テキストの生成、Python SDK と Gemini API を使用した関数呼び出し、Cloud Run を使用した Streamlit アプリケーションのデプロイといったスキルを実証できます。 ここでは、Gemini にテキスト生成のプロンプトを与えるさまざまな方法を確認し、Cloud Shell を使用して Streamlit アプリケーションのテストとイテレーションを行い、Cloud Run にデプロイされる Docker コンテナとしてパッケージ化します。

詳細

このコースでは、Google Cloud の生成 AI を活用したコラボレーターである Gemini が、Google のプロダクトとサービスを使用してアプリケーションを開発、テスト、デプロイ、管理するうえでどのように役立つかを学習します。Gemini を利用して、ウェブ アプリケーションを開発および構築する方法、アプリケーションのエラーを修正する方法、テストを作成する方法、データをクエリする方法を学びます。ハンズオンラボでは、Gemini を使用することでソフトウェア開発ライフサイクル(SDLC)がどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

このコースでは、Google Cloud の生成 AI を活用したコラボレーターである Gemini が、エンジニアによるインフラストラクチャの管理にどのように役立つかについて学習します。アプリケーション ログを検索して理解するように Gemini に指示する方法、GKE クラスタを作成する方法、ビルド環境の作成方法を調査する方法を学びます。ハンズオンラボでは、Gemini を使用することで DevOps ワークフローがどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

このコースでは、Google Cloud の生成 AI を活用したコラボレーターである Gemini が、クラウド環境とリソースを安全に保つうえでどのように役立つかを学習します。サンプル ワークロードを Google Cloud の環境にデプロイする方法、Gemini を使用してセキュリティ構成ミスを特定、修正する方法を学びます。ハンズオンラボでは、Gemini を使用することでクラウドのセキュリティ ポスチャーがどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

このコースでは、生成 AI を活用した Google Cloud のコラボレーターである Gemini が、ネットワーク エンジニアによる VPC ネットワークの作成、更新、管理にどのように役立つかについて学びます。検索エンジンで調べられる内容を超えた、自身のネットワーキング タスクに固有のガイダンスの提供を Gemini に指示する方法を学習します。ハンズオンラボでは、Gemini を使用することで Google Cloud VPC ネットワークの作業がどのように簡単になるかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

このコースでは、生成 AI を活用した Google Cloud のコラボレーターである Gemini が、顧客データの分析や商品売上の予測にどのように役立つかについて学びます。また、BigQuery で顧客データを使用して、新規顧客を特定、分類、発見する方法も学習します。ハンズオンラボでは、Gemini でデータ分析と ML のワークフローがどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

このコースでは、生成 AI を活用した Google Cloud のコラボレーター、Gemini が、デベロッパーのアプリケーション構築にどのように役立つかについて学びます。コードの説明、Google Cloud サービスの提案、アプリケーションのコード生成を Gemini に指示する方法について学びます。ハンズオンラボを使用して、Gemini でアプリケーション開発ワークフローがどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

このコースでは、Google Cloud の生成 AI を活用したコラボレーターである Gemini が、管理者によるインフラストラクチャのプロビジョニングにどのように役立つかについて学習します。Gemini にプロンプトを入力して、インフラストラクチャの説明、GKE クラスタのデプロイ、既存のインフラストラクチャの更新についての情報を取得する方法を学びます。ハンズオン ラボでは、Gemini を使用することで GKE のデプロイ ワークフローがどのように向上するかを体験します。 Duet AI は、Google の次世代モデルである Gemini に名称変更されました。

詳細

This training aims to up-skill Google Cloud partners to deliver customer engagements through Delivery Navigator for available technical practice offerings. Learners will be able to navigate around the Delivery Navigator platform, select the desired method(s), and export the project WBS to a desired work management tool and Shared Google Drive. Sample artefacts are available through the Delivery Navigator methods and will be provided for reference. Contents of this course will be updated as new features are released for the Delivery Navigator platform.

詳細

このコースでは、生成 AI モデルとのやりとり、ビジネス アイデアのプロトタイプ作成、本番環境へのリリースを行うツールである Vertex AI Studio をご紹介します。現実感のあるユースケースや、興味深い講義、ハンズオンラボを通して、プロンプトの作成から成果の実現に至るまでのライフサイクルを詳細に学び、Gemini マルチモーダル アプリケーションの開発、プロンプトの設計、モデルのチューニングに Vertex AI を活用する方法を学習します。Vertex AI Studio を利用することで、生成 AI をプロジェクトに最大限に活かせるようになることを目指します。

詳細

このコースでは拡散モデルについて説明します。拡散モデルは ML モデル ファミリーの一つで、最近、画像生成分野での有望性が示されました。拡散モデルは物理学、特に熱力学からインスピレーションを得ています。ここ数年、拡散モデルは研究と産業界の両方で広まりました。拡散モデルは、Google Cloud の最先端の画像生成モデルやツールの多くを支える技術です。このコースでは、拡散モデルの背景にある理論と、モデルを Vertex AI でトレーニングしてデプロイする方法について説明します。

詳細

This content is deprecated. Please see the latest version of the course, here.

詳細

企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。

詳細

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

詳細

この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。

詳細

このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。

詳細

A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.

詳細

この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。

詳細

The Cloud Foundations Customer Onboarding: Best Practices course enables partners to onboard customers on Google Cloud efficiently and in minimum time, by imparting knowledge, IP, and best practices from the Technical Onboarding Center (TOC) team at Global Delivery Center (GDC). The course explores Cloud Identity and organization, users and groups, administrative access, and resource hierarchy. It also examines network configuration, hybrid connectivity, logging and monitoring, and organizational security.

詳細

このコースでは、Google Cloud 向けに Terraform を使用する方法の概要を説明します。このコースを受講すると、Terraform を使用して Infrastructure as Code を実装し、その主要な特性と機能を使って Google Cloud インフラストラクチャを作成および管理する方法について説明できるようになります。 また、Terraform を使用して Google Cloud のリソースを構築、管理する実践的な演習を受けられます。

詳細

「Google Cloud ネットワークの構築」コースを修了してスキルバッジを獲得しましょう。このコースでは、 アプリケーションをデプロイしてモニタリングするための複数の方法について学びます。具体的には、IAM ロールの確認とプロジェクト アクセスの追加 / 削除、 VPC ネットワークの作成、Compute Engine VM のデプロイとモニタリング、 SQL クエリの記述、Compute Engine での VM のデプロイとモニタリング、Kubernetes を使用した複数のデプロイ アプローチによるアプリケーションのデプロイなどです。

詳細

「b>Compute Engine での Cloud Load Balancing の実装」入門コースを修了してスキルバッジを獲得すると、次のスキルを実証できます: Compute Engine における仮想マシンの作成とデプロイ、 ネットワーク ロードバランサとアプリケーション ロードバランサの構成。

詳細

「Google Cloud におけるアプリ開発環境の設定」コースを完了すると、スキルバッジを獲得できます。このコースでは、 Cloud Storage、Identity and Access Management、Cloud Functions、Pub/Sub のテクノロジーの基本機能を使用して、ストレージ中心のクラウド インフラストラクチャを構築し接続する方法を学びます。

詳細

このオンデマンド速習コースでは、Google Cloud が提供する包括的で柔軟なインフラストラクチャとプラットフォーム サービスについて紹介します。動画講義、デモ、ハンズオンラボを通してさまざまなソリューションの要素について学び、実際にデプロイしてみます。これにはセキュリティを維持しながらネットワークを相互接続する方法や、ロード バランシング、自動スケーリング、インフラストラクチャの自動化、マネージド サービスも含まれます。

詳細

Google Cloud の基礎: コア インストラクチャ では、Google Cloud に関する重要なコンセプトと用語について説明します。このコースでは動画とハンズオンラボを通じて学習を進めていきます。Google Cloud の多数のコンピューティング サービスとストレージ サービス、そしてリソースとポリシーを管理するための重要なツールについて比較しながら説明します。

詳細

このオンデマンド速習コースでは、Google Cloud で提供される包括的かつ柔軟なインフラストラクチャとプラットフォームのサービスについて、Compute Engine を中心に紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してソリューションの各要素について学習し、演習を行います。これらの要素には、ネットワーク、システム、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。また、実践的なソリューションの実装も取り上げ、顧客指定の暗号鍵、セキュリティとアクセス管理、割り当てと課金、リソース モニタリングなどについても学習します。

詳細

このオンデマンド速習コースでは、Google Cloud で提供される包括的かつ柔軟なインフラストラクチャとプラットフォームのサービスについて、Compute Engine を中心に紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してさまざまなソリューションの各要素について学習し、実際のデプロイを演習します。これらの要素には、ネットワークや仮想マシン、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。コンソールと Cloud Shell を使用して Google Cloud を運用する方法についても学習します。また、クラウド アーキテクトの役割、インフラストラクチャ設計の方法、Virtual Private Cloud(VPC)を使用した仮想ネットワークの構成、プロジェクト、ネットワーク、サブネットワーク、IP アドレス、ルート、ファイアウォール ルールについても学習します。

詳細

この入門レベルのクエストでは、Google Cloud の基本的なツールやサービスに関する実践演習を行います。「Google Cloud Essentials」は Qwiklabs で特に人気のあるクエストですが、それはクラウドの予備知識がほとんどなくても、あらゆる Google Cloud プロジェクトに応用できる実際的な経験を積めるからです。 「Google Cloud Essentials」では、Cloud Shell コマンドの記述、初めての仮想マシンのデプロイ、Kubernetes Engine 上でのアプリケーション実行と負荷分散など、Google Cloud の主な機能を紹介します。主なコンセプトは 1 分間のビデオで説明されています。

詳細