加入 登录

Luz Plaja

成为会员时间:2021

白银联赛

3800 积分
Build Streaming Data Pipelines on Google Cloud Earned Jun 29, 2022 EDT
使用 BigQuery ML 為預測模型進行資料工程 Earned Jun 25, 2022 EDT
在 Google Cloud 為機器學習 API 準備資料 Earned Jun 19, 2022 EDT
Build Batch Data Pipelines on Google Cloud Earned Jun 10, 2022 EDT
在 Compute Engine 導入 Cloud Load Balancing Earned May 13, 2022 EDT
Build Data Lakes and Data Warehouses on Google Cloud Earned May 11, 2022 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned Apr 30, 2022 EDT
Leveraging Unstructured Data with Cloud Dataproc on Google Cloud Platform Earned Apr 14, 2022 EDT

In this course you will get hands-on in order to work through real-world challenges faced when building streaming data pipelines. The primary focus is on managing continuous, unbounded data with Google Cloud products.

了解详情

完成使用 BigQuery ML 為預測模型進行資料工程技能徽章中階課程, 即可證明自己具備下列知識與技能:運用 Dataprep by Trifacta 建構連至 BigQuery 的資料轉換 pipeline; 使用 Cloud Storage、Dataflow 和 BigQuery 建構「擷取、轉換及載入」(ETL) 工作負載, 以及使用 BigQuery ML 建構機器學習模型。

了解详情

完成 在 Google Cloud 為機器學習 API 準備資料 技能徽章入門課程,即可證明您具備下列技能: 使用 Dataprep by Trifacta 清理資料、在 Dataflow 執行資料管道、在 Dataproc 建立叢集和執行 Apache Spark 工作,以及呼叫機器學習 API,包含 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。

了解详情

In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.

了解详情

完成「在 Compute Engine 導入 Cloud Load Balancing」技能徽章入門課程,即可證明您具備下列技能: 在 Compute Engine 建立及部署虛擬機器, 以及設定網路和應用程式負載平衡器。

了解详情

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

了解详情

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

了解详情

This 1-week, accelerate course builds upon previous courses in the Data Engineering on Google Cloud Platform specialization. Through a combination of video lectures, demonstrations, and hands-on labs, you'll learn how to create and manage computing clusters to run Hadoop, Spark, Pig and/or Hive jobs on Google Cloud Platform. You will also learn how to access various cloud storage options from their compute clusters and integrate Google's machine learning capabilities into their analytics programs.

了解详情