Join Sign in

Luz Plaja

Member since 2021

Silver League

3800 points
Build Streaming Data Pipelines on Google Cloud Earned Haz 29, 2022 EDT
Engineer Data for Predictive Modeling with BigQuery ML Earned Haz 25, 2022 EDT
Google Cloud'da Makine Öğrenimi API'leri İçin Veri Hazırlama Earned Haz 19, 2022 EDT
Build Batch Data Pipelines on Google Cloud Earned Haz 10, 2022 EDT
Compute Engine İçin Cloud Load Balancing'i Uygulama Earned May 13, 2022 EDT
Build Data Lakes and Data Warehouses on Google Cloud Earned May 11, 2022 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned Nis 30, 2022 EDT
Leveraging Unstructured Data with Cloud Dataproc on Google Cloud Platform Earned Nis 14, 2022 EDT

In this course you will get hands-on in order to work through real-world challenges faced when building streaming data pipelines. The primary focus is on managing continuous, unbounded data with Google Cloud products.

Learn more

Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML.

Learn more

Giriş düzeyindeki Google Cloud'da Makine Öğrenimi API'leri İçin Veri Hazırlama beceri rozetini tamamlayarak şu konulardaki becerilerinizi gösterin: Dataprep by Trifacta ile veri temizleme, Dataflow'da veri ardışık düzenleri çalıştırma, Dataproc'ta küme oluşturma ve Apache Spark işleri çalıştırma ve makine öğrenimi API'lerini (Cloud Natural Language API, Google Cloud Speech-to-Text API ve Video Intelligence API dahil olmak üzere) çağırma.

Learn more

In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.

Learn more

Giriş düzeyindeki Compute Engine İçin Cloud Load Balancing'i Uygulama beceri rozetini tamamlayarak şu konulardaki becerilerinizi gösterin: Compute Engine'de sanal makineler oluşturma ve dağıtma. Ağ ve uygulama yük dengeleyicileri yapılandırma.

Learn more

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

Learn more

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Learn more

This 1-week, accelerate course builds upon previous courses in the Data Engineering on Google Cloud Platform specialization. Through a combination of video lectures, demonstrations, and hands-on labs, you'll learn how to create and manage computing clusters to run Hadoop, Spark, Pig and/or Hive jobs on Google Cloud Platform. You will also learn how to access various cloud storage options from their compute clusters and integrate Google's machine learning capabilities into their analytics programs.

Learn more