Join Sign in

Lokesh Boddepalli

Member since 2024

Diamond League

39744 points
Create media search and media recommendations applications with AI Applications Earned окт. 8, 2025 EDT
Extend Gemini Enterprise Assistant Capabilities Earned окт. 8, 2025 EDT
Introduction to NotebookLM Earned сент. 30, 2025 EDT
Configure AI Applications to optimize search results Earned сент. 22, 2025 EDT
Improve Vertex AI Search and Gemini Enterprise Search Results Earned сент. 22, 2025 EDT
Create and maintain Vertex AI Search data stores Earned сент. 16, 2025 EDT
Vertex AI Search and Gemini Enterprise Analytics Earned сент. 11, 2025 EDT
Vertex AI Search and Gemini Enterprise UI Configurations Earned сент. 11, 2025 EDT
Create Data Stores for Gen AI Applications Earned июня 28, 2025 EDT
Build search and recommendations applications with AI Applications Earned июня 28, 2025 EDT
Accelerate Knowledge Exchange with Gemini Enterprise Earned июня 28, 2025 EDT
Introduction to AI Applications Earned июня 28, 2025 EDT
Boost Productivity with Gemini in BigQuery Earned июня 25, 2025 EDT
Generative AI Fundamentals Earned июня 24, 2025 EDT
Introduction to Vertex AI Studio Earned июня 6, 2025 EDT
Responsible AI: Applying AI Principles with Google Cloud Earned июня 6, 2025 EDT
Introduction to Responsible AI Earned июня 6, 2025 EDT
Generative AI for Business Leaders Earned июня 6, 2025 EDT
DEPRECATED Build and Deploy Machine Learning Solutions on Vertex AI Earned марта 10, 2025 EDT
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned марта 7, 2025 EST
Machine Learning Operations (MLOps): Getting Started Earned марта 5, 2025 EST
Feature Engineering Earned марта 4, 2025 EST
Machine Learning in the Enterprise Earned марта 4, 2025 EST
Data Warehousing for Partners: Optimize in BigQuery Earned февр. 9, 2025 EST
Data Warehousing for Partners: Design in BigQuery Earned февр. 8, 2025 EST
Data Warehousing for Partners: Enable Google Cloud Customers Earned февр. 6, 2025 EST
Google Cloud Big Data and Machine Learning Fundamentals Earned февр. 5, 2025 EST
Google Cloud Fundamentals: Core Infrastructure Earned янв. 2, 2025 EST
Build, Train and Deploy ML Models with Keras on Google Cloud Earned дек. 3, 2024 EST
Launching into Machine Learning Earned нояб. 4, 2024 EST
Introduction to AI and Machine Learning on Google Cloud Earned окт. 1, 2024 EDT

Complete the Create media search and media recommendations applications with AI Applications skill badge to demonstrate your ability to create, configure, and access media search and recommendations applications using AI Applications. Please note that AI Applications was previously named Agent Builder, so you may encounter this older name within the lab content. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

Learn more

Complete the Extend Gemini Enterprise Assistant Capabilities skill badge to demonstrate your ability to extend Gemini Enterprise assistant's capabilities with actions, grounding with Google Search, and a conversational agent. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

Learn more

NotebookLM is an AI-powered collaborator that helps you do your best thinking. After uploading your documents, NotebookLM becomes an instant expert in those sources so you can read, take notes, and collaborate with it to refine and organize your ideas. NotebookLM Pro gives you everything already included with NotebookLM, as well as higher utilization limits, access to premium features, and additional sharing options and analytics.

Learn more

Complete the Configure AI Applications to optimize search results skill badge to demonstrate your proficiency in configuring search results from AI Applications. You will be tasked with implementing search serving controls to boost and bury results, filter entries from search results and display metadata in your search interface. Please note that AI Applications was previously named Agent Builder, so you may encounter this older name within the lab content. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

Learn more

If you've worked with data, you know that some data is more reliable than other data. In this course, you'll learn a variety of techniques to present the most reliable or useful results to your users. Create serving controls to boost or bury search results. Rank search results to ensure that each query is answered by the most relevant data. If needed, tune your search engine. Learn to measure search results to ensure your search applications deliver the best possible results to each user. (Please note Gemini Enterprise was previously named Google Agentspace, there may be references to the previous product name in this course.)

Learn more

Complete the Create and maintain Vertex AI Search data stores skill badge to demonstrate your proficiency in building various types of data stores used in Vertex AI Search applications. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

Learn more

AI Applications provides built-in analytics for your Vertex AI Search and Gemini Enterprise apps. Learn what metrics are tracked and how to view them in this course. (Please note Gemini Enterprise was previously named Google Agentspace, there may be references to the previous product name in this course.)

Learn more

Initial deployment of Vertex AI Search and Gemini Enterprise apps takes only a few clicks, but getting the configurations right can elevate a deployment from a basic off-the-shelf app to an excellent custom search or recommendations experience. In this course, you'll learn more about the many ways you can customize and improve search, recommendations, and Gemini Enterprise apps. (Please note Gemini Enterprise was previously named Google Agentspace, there may be references to the previous product name in this course.)

Learn more

Data stores represent a simple way to make content available to many types of generative AI applications, including search applications, recommendations engines, Gemini Enterprise apps, Agent Development Kit agents, and apps built with Google Gen AI or LangChain SDKs. Connect data from many sources include Cloud Storage, Google Drive, chat apps, mail apps, ticketing systems, third-party file storage providers, Salesforce, and many more.

Learn more

Complete the Build search and recommendations AI Applications skill badge to demonstrate your proficiency in deploying search and recommendation applications through AI Applications. Additionally, emphasis is placed on constructing a tailored Q&A system utilizing data stores. Please note that AI Applications was previously named Agent Builder, so you may encounter this older name within the lab content. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

Learn more

Unite Google’s expertise in search and AI with Gemini Enterprise, a powerful tool designed to help employees find specific information from document storage, email, chats, ticketing systems, and other data sources, all from a single search bar. The Gemini Enterprise assistant can also help brainstorm, research, outline documents, and take actions like inviting coworkers to a calendar event to accelerate knowledge work and collaboration of all kinds. (Please note Gemini Enterprise was previously named Google Agentspace, there may be references to the previous product name in this course.)

Learn more

This course introduces AI Applications. You will learn about the types of apps that you can create using AI Applications, the high-level steps that its data stores automate for you, and what advanced features can be enabled for Search apps. (Please note Gemini Enterprise was previously named Google Agentspace, there may be references to the previous product name in this course.)

Learn more

This course explores Gemini in BigQuery, a suite of AI-driven features to assist data-to-AI workflow. These features include data exploration and preparation, code generation and troubleshooting, and workflow discovery and visualization. Through conceptual explanations, a practical use case, and hands-on labs, the course empowers data practitioners to boost their productivity and expedite the development pipeline.

Learn more

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

Learn more

This course introduces Vertex AI Studio, a tool to interact with generative AI models, prototype business ideas, and launch them into production. Through an immersive use case, engaging lessons, and a hands-on lab, you’ll explore the prompt-to-product lifecycle and learn how to leverage Vertex AI Studio for Gemini multimodal applications, prompt design, prompt engineering, and model tuning. The aim is to enable you to unlock the potential of gen AI in your projects with Vertex AI Studio.

Learn more

As the use of enterprise Artificial Intelligence and Machine Learning continues to grow, so too does the importance of building it responsibly. A challenge for many is that talking about responsible AI can be easier than putting it into practice. If you’re interested in learning how to operationalize responsible AI in your organization, this course is for you. In this course, you will learn how Google Cloud does this today, together with best practices and lessons learned, to serve as a framework for you to build your own responsible AI approach.

Learn more

This is an introductory-level microlearning course aimed at explaining what responsible AI is, why it's important, and how Google implements responsible AI in their products. It also introduces Google's 3 AI principles.

Learn more

A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.

Learn more

Earn the intermediate skill badge by completing the Build and Deploy Machine Learning Solutions on Vertex AI skill badge course, where you learn how to use Google Cloud's Vertex AI platform, AutoML, and custom training services to train, evaluate, tune, explain, and deploy machine learning models.

Learn more

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

Learn more

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Learn more

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

Learn more

This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.

Learn more

Welcome to Optimize in BigQuery, where we map Enterprise Data Warehouse concepts and components to BigQuery and Google data services with a focus on optimization.

Learn more

Welcome to Design in BigQuery, where we map Enterprise Data Warehouse concepts and components to BigQuery and Google data services with a focus on schema design.

Learn more

This course discusses the key elements of Google's Data Warehouse solution portfolio and strategy.

Learn more

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Learn more

Google Cloud Fundamentals: Core Infrastructure introduces important concepts and terminology for working with Google Cloud. Through videos and hands-on labs, this course presents and compares many of Google Cloud's computing and storage services, along with important resource and policy management tools.

Learn more

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Learn more

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

Learn more

This course introduces Google Cloud's AI and machine learning (ML) capabilities, with a focus on developing both generative and predictive AI projects. It explores the various technologies, products, and tools available throughout the data-to-AI lifecycle, empowering data scientists, AI developers, and ML engineers to enhance their expertise through interactive exercises.

Learn more