Gabung Login

Deon Christen

Menjadi anggota sejak 2023

Diamond League

67300 poin
Recommendation Systems on Google Cloud Earned Mar 12, 2024 EDT
Natural Language Processing on Google Cloud Earned Mar 6, 2024 EST
Production Machine Learning Systems Earned Mar 1, 2024 EST
Machine Learning in the Enterprise Earned Feb 27, 2024 EST
Rekayasa Data untuk Pembuatan Model Prediktif dengan BigQuery ML Earned Feb 14, 2024 EST
Feature Engineering Earned Feb 14, 2024 EST
Machine Learning Operations (MLOps): Getting Started Earned Feb 12, 2024 EST
How Google Does Machine Learning Earned Feb 6, 2024 EST
Build Batch Data Pipelines on Google Cloud Earned Jan 29, 2024 EST
Build, Train and Deploy ML Models with Keras on Google Cloud Earned Jan 23, 2024 EST
Launching into Machine Learning Earned Jan 19, 2024 EST
Pengantar AI dan Machine Learning di Google Cloud Earned Jan 15, 2024 EST
Membangun dan Men-Deploy Solusi Machine Learning di Vertex AI Earned Jan 14, 2024 EST
DEPRECATED Create Conversational AI Agents with Dialogflow CX Earned Jan 12, 2024 EST
Admin Roles and Folder Access Earned Jan 10, 2024 EST
DEPRECATED Google Cloud Solutions II: Data and Machine Learning Earned Des 21, 2023 EST
Experimenting and Evaluating your Gen AI models Earned Des 20, 2023 EST
Gemini untuk Data Scientist dan Analis Earned Des 15, 2023 EST
Migrating Hadoop Workloads Earned Des 5, 2023 EST
Document AI Earned Des 1, 2023 EST
Develop Advanced Enterprise Search and Conversation Applications Earned Nov 24, 2023 EST
Use Machine Learning APIs on Google Cloud Earned Nov 14, 2023 EST
Implementing Generative AI with Vertex AI Earned Nov 9, 2023 EST
Integrate Vertex AI Search and Conversation into Voice and Chat Apps Earned Nov 7, 2023 EST
Introduction to CES and Conversational Agents Earned Nov 7, 2023 EST
Building Gen AI Apps with Vertex AI: Prompting and Tuning Earned Nov 3, 2023 EDT
Text Prompt Engineering Techniques Earned Okt 31, 2023 EDT
Membuat Model Pemberian Teks pada Gambar Earned Okt 23, 2023 EDT
Model Transformer dan Model BERT Earned Okt 23, 2023 EDT
Arsitektur Encoder-Decoder Earned Okt 22, 2023 EDT
Mekanisme Atensi Earned Okt 19, 2023 EDT
Search with AI Applications Earned Okt 13, 2023 EDT
Pengantar Vertex AI Studio Earned Okt 9, 2023 EDT
Generative AI Explorer : Vertex AI Earned Okt 9, 2023 EDT
Pengantar Pembuatan Gambar Earned Okt 9, 2023 EDT
Responsible AI: Menerapkan Prinsip AI dengan Google Cloud Earned Okt 9, 2023 EDT
Generative AI Fundamentals Earned Okt 6, 2023 EDT
Pengantar Responsible AI Earned Okt 3, 2023 EDT
Pengantar Model Bahasa Besar Earned Okt 3, 2023 EDT
Generative AI for Business Leaders Earned Okt 3, 2023 EDT
Data Warehousing for Partners: BigQuery Extended Capabilities Earned Sep 29, 2023 EDT
The Modern Data Platform and LookML Earned Sep 29, 2023 EDT
Data Warehousing for Partners: Streaming Analytics Earned Sep 28, 2023 EDT
Data Warehousing for Partners: Analyze Data with Looker Earned Sep 28, 2023 EDT
Data Warehousing for Partners: Stream Data with Pub/Sub Earned Sep 28, 2023 EDT
Data Warehousing for Partners: Process Data with Dataflow Earned Sep 27, 2023 EDT
Driving Data Culture and Designing Dashboards Earned Sep 26, 2023 EDT
Pengantar AI Generatif Earned Sep 25, 2023 EDT
Data Catalog Fundamentals Earned Sep 22, 2023 EDT
Data Warehousing for Partners: Cloud Data Fusion Pipelines Earned Sep 21, 2023 EDT
Data Warehousing for Partners: Process Data with Dataproc Earned Sep 21, 2023 EDT
Data Warehousing for Partners: Optimize in BigQuery Earned Sep 19, 2023 EDT
Data Warehousing for Partners: Design in BigQuery Earned Sep 15, 2023 EDT
Data Warehousing for Partners: Enable Google Cloud Customers Earned Sep 14, 2023 EDT
Applying Machine Learning to your Data with Google Cloud Earned Sep 14, 2023 EDT
Menyiapkan Data untuk ML API di Google Cloud Earned Sep 10, 2023 EDT
Manage Data Models in Looker Earned Sep 8, 2023 EDT
Understanding LookML in Looker Earned Sep 6, 2023 EDT
Membangun Objek LookML di Looker Earned Agu 30, 2023 EDT
Achieving Business Outcomes with Looker Earned Agu 28, 2023 EDT
Applying Advanced LookML Concepts in Looker Earned Agu 28, 2023 EDT
Membuat Model ML dengan BigQuery ML Earned Agu 27, 2023 EDT
Looker Explained Earned Agu 27, 2023 EDT
Mendapatkan Insight dari Data BigQuery Earned Agu 27, 2023 EDT
Menyiapkan Data untuk Dasbor dan Laporan Looker Earned Agu 24, 2023 EDT
Developing Data Models with LookML Earned Agu 21, 2023 EDT
Analyzing and Visualizing Data in Looker Earned Agu 17, 2023 EDT
Achieving Advanced Insights with BigQuery Earned Agu 16, 2023 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned Agu 15, 2023 EDT
Creating New BigQuery Datasets and Visualizing Insights Earned Agu 15, 2023 EDT

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

Pelajari lebih lanjut

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Pelajari lebih lanjut

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

Pelajari lebih lanjut

This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.

Pelajari lebih lanjut

Selesaikan badge keahlian tingkat menengah Rekayasa Data untuk Pembuatan Model Prediktif dengan BigQuery ML untuk menunjukkan keterampilan Anda dalam hal berikut: membangun pipeline transformasi data ke BigQuery dengan Dataprep by Trifacta; menggunakan Cloud Storage, Dataflow, dan BigQuery untuk membangun alur kerja ekstrak, transformasi, dan pemuatan (ETL); serta membangun model machine learning menggunakan BigQuery ML.

Pelajari lebih lanjut

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

Pelajari lebih lanjut

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Pelajari lebih lanjut

This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.

Pelajari lebih lanjut

In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.

Pelajari lebih lanjut

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Pelajari lebih lanjut

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

Pelajari lebih lanjut

Kursus ini memperkenalkan penawaran AI dan machine learning (ML) di Google Cloud yang membangun project AI prediktif dan generatif. Kursus ini akan membahas teknologi, produk, dan alat yang tersedia di seluruh siklus proses data ke AI, yang mencakup fondasi, pengembangan, dan solusi AI. Kursus ini bertujuan membantu data scientist, developer AI, dan engineer ML meningkatkan keterampilan dan pengetahuan mereka melalui pengalaman belajar yang menarik dan latihan praktik langsung.

Pelajari lebih lanjut

Dapatkan badge keahlian tingkat menengah dengan menyelesaikan kursus Membangun dan Men-Deploy Solusi Machine Learning di Vertex AI, tempat Anda akan belajar cara menggunakan platform Vertex AI Google Cloud, AutoML, dan layanan pelatihan kustom untuk melatih, mengevaluasi, menyesuaikan, menjelaskan, serta men-deploy model machine learning. Kursus badge keahlian ini diperuntukkan bagi Data Scientist dan Engineer Machine Learning profesional. Badge keahlian adalah badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan Badge keahlian ini, dan challenge lab penilaian akhir, untuk menerima badge digital yang dapat Anda bagikan ke jaringan Anda.

Pelajari lebih lanjut

Earn a skill badge by completing the Create Conversational AI Agents with Dialogflow CX quest, where you will learn how to create a conversational virtual agent, including how to: define intents and entities, use versions and environments, create conversational branching, and use IVR features. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest, and the final assessment challenge lab, to receive a skill badge that you can share with your network.

Pelajari lebih lanjut

This course is designed to teach you about roles, permission sets and model sets. These are areas that are used together to manage what users can do and what they can see in Looker.

Pelajari lebih lanjut

In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.

Pelajari lebih lanjut

Model experimentation and evaluation are critical steps in the journey to productionalize an LLM. This course introduces new tools that will help simplify these tasks.

Pelajari lebih lanjut

Dalam kursus ini, Anda akan mempelajari bagaimana Gemini, kolaborator yang didukung AI generatif dari Google Cloud, membantu menganalisis data pelanggan dan memprediksi penjualan produk. Anda juga akan mempelajari cara mengidentifikasi, mengategorikan, dan mengembangkan pelanggan baru menggunakan data pelanggan di BigQuery. Dengan menggunakan lab interaktif, Anda akan melihat bagaimana Gemini meningkatkan analisis data dan alur kerja machine learning. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.

Pelajari lebih lanjut

This workload aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks of migrating workloads from Hadoop environments to corresponding Google Cloud services and hosted products. The following will addressed will be: The Hadoop ecosystem and products Hadoop architecture and post migration architectures to Google Cloud Assessment Data transfer options Workload migrations, namely: Spark to Dataproc Serverless, Apache Oozie to Composer (Airflow), and Hive to BigQuery Security and governance Logging and Monitoring

Pelajari lebih lanjut

This course provides partners the skills required to scope, design and deploy Document AI solutions for enterprise customers utilizing use-cases from both the procurement and lending arenas.

Pelajari lebih lanjut

In this course, you'll use text embeddings for tasks like classification, outlier detection, text clustering and semantic search. You'll combine semantic search with the text generation capabilities of an LLM to build Retrieval Augmented Generation (RAG) solutions, such as for question-answering systems, using Google Cloud's Vertex AI and Google Cloud databases.

Pelajari lebih lanjut

Earn the advanced skill badge by completing the Use Machine Learning APIs on Google Cloud course, where you learn the basic features for the following machine learning and AI technologies: Cloud Vision API, Cloud Translation API, and Cloud Natural Language API.

Pelajari lebih lanjut

This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.

Pelajari lebih lanjut

This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.

Pelajari lebih lanjut

This course explores the different products and capabilities of Customer Engagement Suite (CES) and Conversational agents. Additionally, it covers the foundational principles of conversation design to craft engaging and effective experiences that emulate human-like experiences specific to the Chat channel.

Pelajari lebih lanjut

(This course was previously named Multimodal Prompt Engineering with Gemini and PaLM) This course teaches how to use Vertex AI Studio, a Google Cloud console tool for rapidly prototyping and testing generative AI models. You learn to test sample prompts, design your own prompts, and customize foundation models to handle tasks that meet your application's needs. Whether you are looking for text, chat, code, image or speech generative experiences Vertex AI Studio offers you an interface to work with and APIs to integrate your production application.

Pelajari lebih lanjut

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

Pelajari lebih lanjut

Kursus ini menjelaskan cara membuat model keterangan gambar menggunakan deep learning. Anda akan belajar tentang berbagai komponen model keterangan gambar, seperti encoder dan decoder, serta cara melatih dan mengevaluasi model. Pada akhir kursus ini, Anda akan dapat membuat model keterangan gambar Anda sendiri dan menggunakannya untuk menghasilkan teks bagi gambar.

Pelajari lebih lanjut

Kursus ini memperkenalkan Anda pada arsitektur Transformer dan model Representasi Encoder Dua Arah dari Transformer (Bidirectional Encoder Representations from Transformers atau BERT). Anda akan belajar tentang komponen utama arsitektur Transformer, seperti mekanisme self-attention, dan cara penggunaannya untuk membangun model BERT. Anda juga akan belajar tentang berbagai tugas yang dapat memanfaatkan BERT, seperti klasifikasi teks, menjawab pertanyaan, dan inferensi natural language. Kursus ini diperkirakan memakan waktu sekitar 45 menit untuk menyelesaikannya.

Pelajari lebih lanjut

Kursus ini memberi Anda sinopsis tentang arsitektur encoder-decoder, yang merupakan arsitektur machine learning yang canggih dan umum untuk tugas urutan-ke-urutan seperti terjemahan mesin, ringkasan teks, dan tanya jawab. Anda akan belajar tentang komponen utama arsitektur encoder-decoder serta cara melatih dan menyalurkan model ini. Dalam panduan lab yang sesuai, Anda akan membuat kode pada penerapan simpel arsitektur encoder-decoder di TensorFlow untuk pembuatan puisi dari awal.

Pelajari lebih lanjut

Dalam kursus ini Anda akan diperkenalkan dengan mekanisme atensi, yakni teknik efektif yang membuat jaringan neural berfokus pada bagian tertentu urutan input. Anda akan mempelajari cara kerja atensi, cara penggunaannya untuk meningkatkan performa berbagai tugas machine learning, termasuk terjemahan mesin, peringkasan teks, dan menjawab pertanyaan.

Pelajari lebih lanjut

(Previously named "Developing apps with Vertex AI Agent Builder: Search". Please note there maybe instances in this course where previous product names and titles are used) Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use AI Applications to integrate enterprise-grade generative AI search.

Pelajari lebih lanjut

Kursus ini memperkenalkan Vertex AI Studio, sebuah alat untuk berinteraksi dengan model AI generatif, membuat prototipe ide bisnis, dan meluncurkannya ke dalam produksi. Melalui kasus penggunaan yang imersif, pelajaran menarik, dan lab interaktif, Anda akan menjelajahi siklus proses dari perintah ke produk dan mempelajari cara memanfaatkan Vertex AI Studio untuk aplikasi multimodal Gemini, desain perintah, rekayasa perintah, dan tuning model. Tujuan kursus ini adalah agar Anda dapat memanfaatkan potensi AI generatif dalam project Anda dengan Vertex AI Studio.

Pelajari lebih lanjut

This content is deprecated. Please see the latest version of the course, here.

Pelajari lebih lanjut

Kursus ini memperkenalkan model difusi, yaitu kelompok model machine learning yang belakangan ini menunjukkan potensinya dalam ranah pembuatan gambar. Model difusi mengambil inspirasi dari fisika, khususnya termodinamika. Dalam beberapa tahun terakhir, model difusi menjadi populer baik di dunia industri maupun penelitian. Model difusi mendasari banyak alat dan model pembuatan gambar yang canggih di Google Cloud. Kursus ini memperkenalkan Anda pada teori yang melandasi model difusi dan cara melatih serta men-deploy-nya di Vertex AI.

Pelajari lebih lanjut

Seiring semakin meningkatnya penggunaan Kecerdasan Buatan dan Machine Learning di kalangan perusahaan, proses membangunnya secara bertanggung jawab juga menjadi semakin penting. Membicarakan responsible AI mungkin lebih mudah bagi banyak orang daripada mempraktikkannya. Jika Anda tertarik untuk mempelajari cara mengoperasionalkan responsible AI dalam organisasi Anda, kursus ini cocok untuk Anda. Dalam kursus ini, Anda akan mempelajari bagaimana Google Cloud mengoperasionalkan responsible AI, dengan praktik terbaik dan pelajaran yang dapat dipetik. Hal ini berguna sebagai framework bagi Anda untuk membangun pendekatan responsible AI.

Pelajari lebih lanjut

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

Pelajari lebih lanjut

Ini adalah kursus pengantar pembelajaran mikro yang dimaksudkan untuk menjelaskan responsible AI, alasan pentingnya responsible AI, dan cara Google mengimplementasikan responsible AI dalam produknya. Kursus ini juga memperkenalkan 7 prinsip AI Google.

Pelajari lebih lanjut

Ini adalah kursus pengantar pembelajaran mikro yang membahas definisi model bahasa besar (LLM), kasus penggunaannya, dan cara menggunakan prompt tuning untuk meningkatkan performa LLM. Kursus ini juga membahas beberapa alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.

Pelajari lebih lanjut

A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.

Pelajari lebih lanjut

This course explores the Geographic Information Systems (GIS), GIS Visualization, and machine learning enhancements to BigQuery.

Pelajari lebih lanjut

This course provides an introduction to databases and summarized the differences in the main database technologies. This course will also introduce you to Looker and how Looker scales as a modern data platform. In the lessons, you will build and maintain standard Looker data models and establish the foundation necessary to learn Looker's more advanced features.

Pelajari lebih lanjut

This course explores how to implement a streaming analytics solution using Dataflow and BigQuery.

Pelajari lebih lanjut

This course explores how to leverage Looker to create data experiences and gain insights with modern business intelligence (BI) and reporting.

Pelajari lebih lanjut

This course explores how to implement a streaming analytics solution using Pub/Sub.

Pelajari lebih lanjut

This course continues to explore the implementation of data load and transformation pipelines for a BigQuery Data Warehouse using Dataflow.

Pelajari lebih lanjut

This course provides an iterative approach to plan, build, launch, and grow a modern, scalable, mature analytics ecosystem and data culture in an organization that consistently achieves established business outcomes. Users will also learn how to design and build a useful, easy-to-use dashboard in Looker. It assumes experience with everything covered in our Getting Started with Looker and Building Reports in Looker courses.

Pelajari lebih lanjut

Ini adalah kursus pengantar pembelajaran mikro yang bertujuan untuk mendefinisikan AI Generatif, cara penggunaannya, dan perbedaannya dari metode machine learning konvensional. Kursus ini juga mencakup Alat-alat Google yang dapat membantu Anda mengembangkan aplikasi AI Generatif Anda sendiri.

Pelajari lebih lanjut

Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.

Pelajari lebih lanjut

This course continues to explore the implementation of data load and transformation pipelines for a BigQuery Data Warehouse using Cloud Data Fusion.

Pelajari lebih lanjut

This course explores the implementation of data load and transformation pipelines for a BigQuery Data Warehouse using Dataproc.

Pelajari lebih lanjut

Welcome to Optimize in BigQuery, where we map Enterprise Data Warehouse concepts and components to BigQuery and Google data services with a focus on optimization.

Pelajari lebih lanjut

Welcome to Design in BigQuery, where we map Enterprise Data Warehouse concepts and components to BigQuery and Google data services with a focus on schema design.

Pelajari lebih lanjut

This course discusses the key elements of Google's Data Warehouse solution portfolio and strategy.

Pelajari lebih lanjut

In this course, we define what machine learning is and how it can benefit your business. You'll see a few demos of ML in action and learn key ML terms like instances, features, and labels. In the interactive labs, you will practice invoking the pretrained ML APIs available as well as build your own Machine Learning models using just SQL with BigQuery ML.

Pelajari lebih lanjut

Selesaikan badge keahlian pengantar Menyiapkan Data untuk ML API di Google Cloud untuk menunjukkan keterampilan Anda dalam hal berikut: menghapus data dengan Dataprep by Trifacta, menjalankan pipeline data di Dataflow, membuat cluster dan menjalankan tugas Apache Spark di Dataproc, dan memanggil beberapa ML API, termasuk Cloud Natural Language API, Google Cloud Speech-to-Text API, dan Video Intelligence API.

Pelajari lebih lanjut

Complete the intermediate Manage Data Models in Looker skill badge course to demonstrate skills in the following: maintaining LookML project health; utilizing SQL runner for data validation; employing LookML best practices; optimizing queries and reports for performance; and implementing persistent derived tables and caching policies.

Pelajari lebih lanjut

In this quest, you will get hands-on experience with LookML in Looker. You will learn how to write LookML code to create new dimensions and measures, create derived tables and join them to Explores, filter Explores, and define caching policies in LookML.

Pelajari lebih lanjut

Selesaikan kursus badge keahlian pengantar Membangun Objek LookML di Looker untuk menunjukkan keterampilan dalam hal berikut: membuat dimensi dan ukuran, tabel turunan, serta tampilan baru; menetapkan filter ukuran dan berdasarkan persyaratan; memperbarui dimensi dan ukuran; membangun dan menyempurnakan Eksplorasi; menggabungkan tabel ke Eksplorasi yang ada; dan memutuskan objek yang akan dibuat berdasarkan persyaratan bisnis.

Pelajari lebih lanjut

In this course, we’ll show you how organizations are aligning their BI strategy to most effectively achieve business outcomes with Looker. We'll follow four iterative steps: Plan, Build, Launch, Grow, and provide resources to take into your own services delivery to build Looker with the goal of achieving business outcomes.

Pelajari lebih lanjut

In this course, you will get hands-on experience applying advanced LookML concepts in Looker. You will learn how to use Liquid to customize and create dynamic dimensions and measures, create dynamic SQL derived tables and customized native derived tables, and use extends to modularize your LookML code.

Pelajari lebih lanjut

Selesaikan badge keahlian tingkat menengah Membuat Model ML dengan BigQuery ML untuk menunjukkan keterampilan dalam hal berikut: membuat dan mengevaluasi model machine learning dengan BigQuery ML untuk membuat prediksi data. Badge keahlian merupakan badge digital eksklusif yang diberikan oleh Google Cloud sebagai pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursus badge keahlian ini, dan challenge lab penilaian akhir, untuk menerima badge keahlian yang dapat Anda bagikan ke jaringan Anda.

Pelajari lebih lanjut

By the end of this course, you should be able to articulate Looker's value propositions and what makes it different from other analytics tools in the market. You should also be able to explain how Looker works, and explain the standard components of successful service delivery.

Pelajari lebih lanjut

Selesaikan badge keahlian pengantar Mendapatkan Insight dari Data BigQuery untuk menunjukkan keterampilan dalam hal berikut: menulis kueri SQL, membuat kueri tabel publik, memuat sampel data ke dalam BigQuery, memecahkan masalah error sintaksis umum dengan validator kueri di BigQuery, dan membuat laporan di Looker Studio dengan menghubungkannya ke data BigQuery.

Pelajari lebih lanjut

Selesaikan badge keahlian pengantar Menyiapkan Data untuk Dasbor dan Laporan Looker untuk menunjukkan keterampilan dalam hal berikut: memfilter, mengurutkan, dan melakukan pivot pada data; menggabungkan hasil dari sejumlah Eksplorasi Looker; serta menggunakan fungsi dan operator untuk membangun dasbor dan laporan Looker untuk analisis dan visualisasi data.

Pelajari lebih lanjut

This course empowers you to develop scalable, performant LookML (Looker Modeling Language) models that provide your business users with the standardized, ready-to-use data that they need to answer their questions. Upon completing this course, you will be able to start building and maintaining LookML models to curate and manage data in your organization’s Looker instance.

Pelajari lebih lanjut

In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.

Pelajari lebih lanjut

The third course in this course series is Achieving Advanced Insights with BigQuery. Here we will build on your growing knowledge of SQL as we dive into advanced functions and how to break apart a complex query into manageable steps. We will cover the internal architecture of BigQuery (column-based sharded storage) and advanced SQL topics like nested and repeated fields through the use of Arrays and Structs. Lastly we will dive into optimizing your queries for performance and how you can secure your data through authorized views. After completing this course, enroll in the Applying Machine Learning to your Data with Google Cloud course.

Pelajari lebih lanjut

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Pelajari lebih lanjut

This is the second course in the Data to Insights course series. Here we will cover how to ingest new external datasets into BigQuery and visualize them with Looker Studio. We will also cover intermediate SQL concepts like multi-table JOINs and UNIONs which will allow you to analyze data across multiple data sources. Note: Even if you have a background in SQL, there are BigQuery specifics (like handling query cache and table wildcards) that may be new to you. After completing this course, enroll in the Achieving Advanced Insights with BigQuery course.

Pelajari lebih lanjut