"Noções básicas do Google Cloud: infraestrutura principal" é uma apresentação da terminologia e de conceitos importantes para trabalhar com o Google Cloud. Usando vídeos e laboratórios práticos, o curso apresenta e compara vários serviços de armazenamento e computação do Google Cloud, além de ferramentas importantes para o gerenciamento de políticas e recursos.
Explore Playbooks and their implementation of the ReAct pattern for building Conversational Agents. You will learn how to construct a Playbook, set up goals and instructions to build a chatbot in natural language, and learn to test and deploy your solution.
This course explores the different products and capabilities of Customer Engagement Suite (CES) and Conversational agents. Additionally, it covers the foundational principles of conversation design to craft engaging and effective experiences that emulate human-like experiences specific to the Chat channel.
Este curso apresenta tópicos importantes sobre privacidade e segurança da IA. Ele também aborda recursos e métodos úteis para implementar práticas recomendadas de privacidade e segurança da IA com o uso de produtos do Google Cloud e ferramentas de código aberto.
Neste curso, apresentamos os conceitos de interpretabilidade e transparência em IA. Vamos abordar a importância da transparência em IA para desenvolvedores e engenheiros. O curso também abrange ferramentas e métodos práticos para ajudar a alcançar a interpretabilidade e a transparência em dados e modelos de IA.
Neste curso, apresentamos conceitos de IA responsável e princípios de IA. Ele contém técnicas para identificar e reduzir o viés e aplicar a imparcialidade nas práticas de ML/IA. Vamos abordar ferramentas e métodos práticos para implementar as práticas recomendadas de IA responsável usando produtos do Google Cloud e ferramentas de código aberto.
Conquiste o selo de habilidade intermediário ao concluir o curso Como criar e implantar soluções de machine learning na Vertex AI. Nele você aprenderá a usar a plataforma Vertex AI, o AutoML e os serviços de treinamento personalizados para treinar, avaliar, ajustar, explicar e implantar modelos de machine learning. Esse curso com selo de habilidade é destinado a cientistas de dados e engenheiros de machine learning. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam sua habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua o curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com sua rede.
Os aplicativos de IA generativa proporcionam novas experiências de usuário que eram quase impossíveis antes da invenção dos modelos de linguagem grandes (LLMs). Ao desenvolver aplicativos, como você pode usar a IA generativa para criar apps potentes e interativos no Google Cloud? Neste curso, você vai conhecer os aplicativos de IA generativa e aprender a usar o design de comandos e a geração aumentada de recuperação (RAG) para criar apps avançados com a ajuda dos LLMs. Você também vai saber o que é a arquitetura pronta para produção, usada nos aplicativos de IA generativa, e vai criar um aplicativo de chat com base em RAG e LLM.
Este é um curso de microlearning de nível introdutório que explica o que são modelos de linguagem grandes (LLM), os casos de uso em que podem ser aplicados e como é possível fazer o ajuste de comandos para aprimorar o desempenho dos LLMs. O curso também aborda as ferramentas do Google que ajudam a desenvolver seus próprios apps de IA generativa.
Neste curso, profissionais de machine learning vão conhecer as principais ferramentas, técnicas e práticas recomendadas para avaliar modelos de IA generativa e preditiva. Essa avaliação é muito importante para garantir que os sistemas de ML produzam resultados confiáveis, precisos e de alto desempenho na produção. Os participantes vão entender em detalhes as várias métricas e metodologias de avaliação, além da aplicação correta delas em diferentes tarefas e tipos de modelo. O foco do curso está nos desafios específicos dos modelos de IA generativa e nas estratégias para lidar com eles de forma eficaz. Usando a plataforma Vertex AI do Google Cloud, os participantes vão aprender a implementar processos robustos de avaliação para selecionar e otimizar os modelos, com monitoramento contínuo.
Neste curso, os participantes vão conhecer as ferramentas de MLOps e as práticas recomendadas para a implantação, a avaliação, o monitoramento e a operação de sistemas de ML de produção no Google Cloud. MLOps é uma disciplina com foco na implantação, teste, monitoramento e automação de sistemas de ML em produção. Também incluímos experiências práticas de uso da ingestão de streaming do Vertex AI Feature Store na camada do SDK.
Neste curso, os participantes vão conhecer as ferramentas de MLOps e as práticas recomendadas para a implantação, a avaliação, o monitoramento e a operação de sistemas de ML de produção no Google Cloud. MLOps é uma disciplina com foco na implantação, no teste, no monitoramento e na automação de sistemas de ML em produção. Profissionais de engenharia de machine learning usam ferramentas para fazer melhorias contínuas e avaliações de modelos implantados. São profissionais que trabalham com ciências de dados e desenvolvem modelos para garantir a velocidade e o rigor na implantação de modelos com melhor desempenho.
Neste curso, vamos conhecer os componentes e as práticas recomendadas para criar sistemas de ML com alto desempenho em ambientes de produção. Vamos abordar algumas considerações comuns relacionadas à criação desses sistemas, como treinamento estático e dinâmico, inferência estática e dinâmica, TensorFlow distribuído e TPUs. O objetivo deste curso é conhecer as características de um sistema de ML eficiente, que vão muito além da capacidade de fazer boas previsões.
Este curso ensina a criar modelos de ML com o TensorFlow e o Keras, melhorar a acurácia deles e desenvolver modelos para uso em escala.
O curso apresenta os benefícios de usar a Vertex AI Feature Store e ensina a melhorar a acurácia dos modelos de ML e a identificar as colunas de dados que apresentam os atributos mais úteis. Ele também oferece conteúdo teórico e laboratórios sobre engenharia de atributos com BigQuery ML, Keras e TensorFlow.
Conclua o selo de habilidade intermediário Dados de engenharia para modelagem preditiva com o BigQuery ML para mostrar que você sabe: criar pipelines de transformação de dados no BigQuery usando o Dataprep by Trifacta; usar o Cloud Storage, o Dataflow e o BigQuery para criar fluxos de trabalho de extração, transformação e carregamento de dados (ELT); e criar modelos de machine learning usando o BigQuery ML.
Conquiste o selo de habilidade introdutório Preparar dados para APIs de ML no Google Cloud para demonstrar que você é capaz de: limpar dados com o Dataprep by Trifacta, executar pipelines de dados no Dataflow, criar clusters e executar jobs do Apache Spark no Dataproc e chamar APIs de ML, incluindo as APIs Cloud Natural Language, Google Cloud Speech-to-Text e Video Intelligence.
O objetivo desse curso é equipar você com o conhecimento e as ferramentas necessários para resolver os desafios enfrentados por equipes de MLOps durante o desenvolvimento e gerenciamento de modelos de IA generativa. Também queremos mostrar como a Vertex AI ajuda equipes de IA a simplificar processos de MLOps e a alcançar o sucesso em projetos de IA generativa.
Este é um curso de microaprendizagem introdutório que busca explicar a IA generativa: o que é, como é usada e por que ela é diferente de métodos tradicionais de machine learning. O curso também aborda as ferramentas do Google que ajudam você a desenvolver apps de IA generativa.
Conclua o selo de habilidade intermediário Criar modelos de ML com o BigQuery ML para mostrar que você sabe: criar e avaliar modelos de machine learning usando o BigQuery ML para fazer previsões de dados. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam a habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua este curso e o laboratório com desafio da avaliação final para receber um selo de habilidade que pode ser compartilhado com seus contatos.
Este curso é uma introdução aos Notebooks da Vertex AI, que são ambientes baseados em notebooks do Jupyter. Eles fornecem uma plataforma unificada para todo o fluxo de trabalho de machine learning, desde a preparação de dados até a implantação e monitoramento de modelos. Tópicos do curso: (1) Diferentes tipos de Notebooks da Vertex AI e os recursos deles e (2) Como criar e gerenciar Notebooks da Vertex AI.
Neste curso, apresentamos os recursos de IA e machine learning (ML) no Google Cloud que criam projetos de IA generativa e preditiva. Vamos conhecer as tecnologias, os produtos e as ferramentas disponíveis em todo o ciclo de vida de dados à IA, o que inclui os fundamentos dessa tecnologia, o desenvolvimento e as soluções dela. O objetivo é ajudar cientistas de dados, desenvolvedores de IA e engenheiros de ML a aprimorar habilidades e o conhecimento com experiências de aprendizado envolventes e exercícios práticos.
Os cursos da Google Cloud Computing Foundations são direcionados para pessoas com pouca ou nenhuma formação ou experiência na área de computação em nuvem. Eles apresentam uma visão geral dos principais conceitos de nuvem, Big Data e machine learning, além de explicar onde e como usar o Google Cloud. Ao final da série de cursos, os alunos serão capazes de articular estes conceitos e demonstrar algumas habilidades práticas. Conclua os cursos na seguinte ordem: 1. Fundamentos da computação do Google Cloud: noções básicas da computação em nuvem 2. Fundamentos da computação do Google Cloud: infraestrutura no Google Cloud 3. Fundamentos da computação do Google Cloud: rede e segurança no Google Cloud 4. Fundamentos da computação do Google Cloud: dados, ML e IA no Google Cloud Este primeiro curso apresenta uma visão geral da computação em nuvem, formas de usar o Google Cloud e as diferentes opções de computação.