Karunakara Rao Kancharla
Miembro desde 2020
Liga de Bronce
400 puntos
Miembro desde 2020
This advanced-level Quest builds on its predecessor Quest, and offers hands-on practice on the more advanced data integration features available in Cloud Data Fusion, while sharing best practices to build more robust, reusable, dynamic pipelines. Learners get to try out the data lineage feature as well to derive interesting insights into their data’s history.
¿Quiere optimizar o compilar su almacén de datos? Aprenda las prácticas recomendadas para extraer, transformar y cargar sus datos en Google Cloud con BigQuery. En esta serie de labs interactivos, creará y optimizará su almacén de datos con una variedad de conjuntos de datos públicos de BigQuery a gran escala. BigQuery es la base de datos estadísticos de Google de bajo costo, NoOps y completamente administrada. Con BigQuery, puede consultar muchos terabytes de datos sin tener que administrar infraestructuras y sin necesitar un administrador de base de datos. BigQuery usa SQL y puede aprovechar el modelo de prepago. BigQuery le permite enfocarse en el análisis de datos para buscar estadísticas valiosas.
El procesamiento de datos de transmisión es cada vez más popular, puesto que permite a las empresas obtener métricas en tiempo real sobre las operaciones comerciales. Este curso aborda cómo crear canalizaciones de datos de transmisión en Google Cloud. Pub/Sub se describe para manejar los datos de transmisión entrantes. El curso también aborda cómo aplicar agregaciones y transformaciones a los datos de transmisión con Dataflow y cómo almacenar los registros procesados en BigQuery o Bigtable para analizarlos. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos de transmisión en Google Cloud con QwikLabs.