Matheus Silva
成为会员时间:2021
钻石联赛
13125 积分
成为会员时间:2021
本课程展示了如何在 BigQuery 中使用 AI/机器学习模型处理生成式 AI 任务。通过一个涉及客户关系管理的实际应用场景,您将学习到使用 Gemini 模型解决业务问题的工作流程。为了便于理解,本课程还将通过使用 SQL 查询和 Python 笔记本的编码解决方案提供分步指导。
此课程将探索如何使用 AI 功能套件 Gemini in BigQuery 为“数据到 AI”工作流提供助力。其中涉及到的功能包括数据探索和准备、代码生成和问题排查,以及工作流发现和可视化。此课程包含概念解释、真实使用场景以及实操实验等内容,可帮助数据从业者提升效率并加快流水线开发速度。
完成入门技能徽章课程使用 Dataplex 构建数据网格,展示以下方面的技能:使用 Dataplex 构建数据网格, 以在 Google Cloud 上实现数据安全、治理和发现。您将在 Dataplex 中练习和测试自己在标记资产、分配 IAM 角色和评估数据质量方面的技能。
在本课程中,您将了解 Google Cloud 数据工程、数据工程师的角色和职责,以及相关的 Google Cloud 产品和服务。您还将了解如何应对数据工程挑战。
完成中级技能徽章课程使用 BigQuery 构建数据仓库,展示以下技能: 联接数据以创建新表、排查联接故障、使用并集附加数据、创建日期分区表, 以及在 BigQuery 中使用 JSON、数组和结构体。
This content is deprecated. Please see the latest version of the course, here.
This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.
完成入门级技能徽章课程在 Google Cloud 上为机器学习 API 准备数据,展示以下技能: 使用 Dataprep by Trifacta 清理数据、在 Dataflow 中运行数据流水线、在 Dataproc 中创建集群和运行 Apache Spark 作业,以及调用机器学习 API,包括 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.
In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.
完成入门级技能徽章课程为 Compute Engine 实现云负载均衡,展示以下方面的技能: 在 Compute Engine 中创建和部署虚拟机 以及配置网络和应用负载均衡器。
完成中级技能徽章课程利用 BigQuery ML 构建预测模型时的数据工程处理, 展示自己在以下方面的技能:利用 Dataprep by Trifacta 构建 BigQuery 数据转换流水线; 利用 Cloud Storage、Dataflow 和 BigQuery 构建提取、转换和加载 (ETL) 工作流; 以及利用 BigQuery ML 构建机器学习模型。
In this second installment of the Dataflow course series, we are going to be diving deeper on developing pipelines using the Beam SDK. We start with a review of Apache Beam concepts. Next, we discuss processing streaming data using windows, watermarks and triggers. We then cover options for sources and sinks in your pipelines, schemas to express your structured data, and how to do stateful transformations using State and Timer APIs. We move onto reviewing best practices that help maximize your pipeline performance. Towards the end of the course, we introduce SQL and Dataframes to represent your business logic in Beam and how to iteratively develop pipelines using Beam notebooks.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.
In this course you will get hands-on in order to work through real-world challenges faced when building streaming data pipelines. The primary focus is on managing continuous, unbounded data with Google Cloud products.
While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.