Rejoindre Se connecter

Srdjan Dusan Radic Gonzalez

Date d'abonnement : 2022

Ligue d'Argent

9400 points
Créer un entrepôt de données avec BigQuery Earned oct. 12, 2022 EDT
Créer des pipelines de données en batch sur Google Cloud Earned oct. 2, 2022 EDT
Préparer des données pour les API de ML sur Google Cloud Earned oct. 2, 2022 EDT
Ingénierie des données pour la modélisation prédictive avec BigQuery ML Earned oct. 1, 2022 EDT
Moderniser des lacs de données et des entrepôts de données avec Google Cloud Earned août 15, 2022 EDT
Google Cloud Big Data and Machine Learning Fundamentals - Français Earned août 3, 2022 EDT
Créer une infrastructure avec Terraform sur Google Cloud Earned juil. 3, 2022 EDT
Implémenter Cloud Load Balancing pour Compute Engine Earned juil. 3, 2022 EDT
Google Cloud Essentials Earned juil. 3, 2022 EDT
Configurer un environnement de développement d'applications sur Google Cloud Earned juin 23, 2022 EDT

Terminez le cours intermédiaire Créer un entrepôt de données avec BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : la jointure de données pour créer des tables, la résolution des problèmes liés aux jointures, l'ajout de données avec des unions, la création de tables partitionnées par date, et l'utilisation d'objets JSON, ARRAY et STRUCT dans BigQuery.

En savoir plus

Les pipelines de données s'inscrivent généralement dans l'un des paradigmes EL (extraction et chargement), ELT (extraction, chargement et transformation) ou ETL (extraction, transformation et chargement). Ce cours indique quel paradigme utiliser pour le traitement de données par lot en fonction du contexte. Il présente également plusieurs technologies Google Cloud de transformation des données, y compris BigQuery, l'exécution de Spark sur Dataproc, les graphiques de pipelines dans Cloud Data Fusion et le traitement des données sans serveur avec Dataflow. Les participants mettront en pratique les connaissances qu'ils auront acquises en créant des composants de pipelines de données sur Google Cloud à l'aide de Qwiklabs.

En savoir plus

Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence.

En savoir plus

Terminez le cours intermédiaire Ingénierie des données pour la modélisation prédictive avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création de pipelines de transformation des données dans BigQuery avec Dataprep by Trifacta ; l'utilisation de Cloud Storage, Dataflow et BigQuery pour créer des workflows ETL (Extract, Transform and Load) ; et la création de modèles de machine learning avec BigQuery ML.

En savoir plus

Les lacs de données et les entrepôts de données sont les deux principaux composants des pipelines de données. Ce cours présente des cas d'utilisation de chaque type de stockage, ainsi que les détails techniques des solutions de lacs et d'entrepôts de données disponibles sur Google Cloud. Il décrit également le rôle des ingénieurs de données et les avantages d'un pipeline de données réussi sur les opérations commerciales, avant d'expliquer pourquoi il est important de procéder à l'ingénierie des données dans un environnement cloud. Il s'agit du premier cours de la série "Ingénierie des données sur Google Cloud". Après l'avoir terminé, inscrivez-vous au cours "Créer des pipelines de données en batch sur Google Cloud".

En savoir plus

Ce cours présente les produits et services Google Cloud pour le big data et le machine learning compatibles avec le cycle de vie "des données à l'IA". Il explore les processus, défis et avantages liés à la création d'un pipeline de big data et de modèles de machine learning avec Vertex AI sur Google Cloud.

En savoir plus

Terminez le cours intermédiaire Créer une infrastructure avec Terraform sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : les principes d'Infrastructure as Code (IaC) avec Terraform, le provisionnement et la gestion des ressources Google Cloud avec des configurations Terraform, la gestion efficace des états (local et distant) et la modularisation du code Terraform à des fins de réutilisabilité et d'organisation.

En savoir plus

Terminez le cours d'introduction Implémenter Cloud Load Balancing pour Compute Engine pour recevoir un badge démontrant vos compétences dans les domaines suivants : Créer et déployer des machines virtuelles dans Compute Engine Configurer des équilibreurs de charge réseau et d'application.

En savoir plus

Cette quête d'introduction se compose d'ateliers pratiques qui vous permettent de vous familiariser avec les outils et services de base de Google Cloud Platform. "GCP Essentials" est la première quête recommandée pour les personnes s'intéressant à Google Cloud. Vous pouvez la suivre sans aucune connaissance (ou presque) du cloud et, une fois la quête terminée, vous disposerez de compétences pratiques qui vous seront utiles pour n'importe quel projet GCP. De l'écriture de lignes de commande Cloud Shell au déploiement de votre première machine virtuelle en passant par l'exécution d'applications sur Kubernetes Engine avec l'équilibrage de charge, "GCP Essentials" constitue une excellente introduction aux fonctionnalités de base de la plate-forme. Des vidéos d'une minute résument les concepts clés de ces ateliers.

En savoir plus

Suivez le cours Configurer un environnement de développement d'applications sur Google Cloud et obtenez un badge de compétence. Dans ce cours, vous apprendrez à créer et connecter une infrastructure cloud axée sur le stockage à l'aide des fonctionnalités de base des technologies suivantes Cloud Storage, Identity and Access Management, Cloud Functions et Pub/Sub.

En savoir plus