Unirse Acceder

Armielyn Obinguar

Miembro desde 2022

Moderniza infraestructura y aplicaciones con Google Cloud Earned oct 28, 2022 EDT
Explora la transformación de datos con Google Cloud Earned oct 28, 2022 EDT
Transformación digital con Google Cloud Earned oct 27, 2022 EDT
Recommendation Systems on Google Cloud Earned ago 26, 2022 EDT
Crea, entrena e implementa modelos de AA con Keras en Google Cloud Earned ago 25, 2022 EDT
Natural Language Processing on Google Cloud Earned ago 25, 2022 EDT
Aprendizaje automático en empresas Earned ago 24, 2022 EDT
Sistemas de aprendizaje automático de producción Earned ago 23, 2022 EDT
Launching into Machine Learning - Español Earned ago 23, 2022 EDT
End-to-End Machine Learning with TensorFlow on Google Cloud Earned ago 15, 2022 EDT
How Google Does Machine Learning - Español Earned ago 9, 2022 EDT
Google Cloud Big Data and Machine Learning Fundamentals - Español Earned ago 8, 2022 EDT

Muchas empresas tradicionales usan aplicaciones y sistemas heredados que no pueden adecuarse a las expectativas de los clientes actuales. A menudo los líderes empresariales deben elegir entre mantener sus sistemas de TI anticuados o invertir en nuevos productos y servicios. En “Moderniza infraestructura y aplicaciones con Google Cloud”, se exploran estos desafíos y se ofrecen soluciones para superarlos con la tecnología de la nube. Como parte de la ruta de aprendizaje de Líder digital de Cloud, el objetivo de este curso es ayudar a las personas a crecer en su rol y desarrollar el futuro de su empresa.

Más información

La tecnología de Cloud puede aportar un gran valor a una organización y, si la combinamos con datos, podemos generar aún más valor y crear nuevas experiencias para los clientes.En “Explora la transformación de datos con Google Cloud”, se explora el valor que los datos pueden aportar a una organización y las formas en que Google Cloud puede hacer que estos sean útiles y accesibles.Como parte de la ruta de aprendizaje de Líder digital de Cloud, el objetivo de este curso es ayudar a las personas a crecer en su rol y desarrollar el futuro de su empresa.

Más información

Existe mucho entusiasmo sobre la tecnología de la nube y la transformación digital, pero también muchas preguntas sin respuesta. Por ejemplo: ¿Qué es la tecnología de la nube? ¿Qué significa transformación digital? ¿De qué manera puede ser útil la tecnología de la nube para la organización? ¿Cómo se puede comenzar? Si te has hecho alguna de esas preguntas, estás en el lugar indicado. En este curso, se proporciona una descripción general de los tipos de oportunidades y desafíos a los que las empresas suelen enfrentarse en su recorrido de transformación digital. Si quieres aprender sobre la tecnología de la nube para sobresalir en tu rol y ayudar a desarrollar el futuro de tu empresa, entonces este curso introductorio sobre transformación digital es para ti. Este curso es parte de la ruta de aprendizaje de Líder digital de Cloud.

Más información

In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.

Más información

En este curso, se explica cómo crear modelos de AA con TensorFlow y Keras, cómo mejorar la exactitud de los modelos de AA y cómo escribir modelos de AA para uso escalado.

Más información

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Más información

En este curso, se aplica un enfoque real en el flujo de trabajo del AA a través de un caso de éxito. Un equipo de AA trabaja con varios requisitos empresariales y casos de uso de AA. El equipo debe comprender las herramientas necesarias para la administración de los datos y considerar el mejor enfoque para su procesamiento previo. Al equipo se le presentan tres opciones con las que puede crear modelos de AA para dos casos de uso. En el curso, se explica por qué el equipo usará AutoML, BigQuery ML o entrenamiento personalizado para lograr sus objetivos.

Más información

En este curso, analizaremos los componentes y las prácticas recomendadas de la creación de sistemas de AA de alto rendimiento en entornos de producción. Veremos algunas de las consideraciones más comunes tras la creación de estos sistemas, p. ej., entrenamiento estático, entrenamiento dinámico, inferencia estática, inferencia dinámica, TensorFlow distribuido y TPU. Este curso se enfoca en explorar las características que conforman un buen sistema de AA más allá de su capacidad de realizar predicciones correctas.

Más información

El curso comienza con un debate sobre los datos: cómo mejorar su calidad y cómo realizar análisis exploratorios de ellos. Describimos Vertex AI AutoML y cómo crear, entrenar e implementar un modelo de AA sin escribir una sola línea de código. Conocerás los beneficios de BigQuery ML. Luego, se analiza cómo optimizar un modelo de aprendizaje automático (AA) y cómo la generalización y el muestreo pueden ayudar a evaluar la calidad de los modelos de AA para el entrenamiento personalizado.

Más información

One of the best ways to review something is to work with the concepts and technologies that you have learned. So, this course is set up as a workshop and in this workshop, you will do End-to-End Machine Learning with TensorFlow on Google Cloud Platform. It involves building an end-to-end model from data exploration all the way to deploying an ML model and getting predictions from it. This is the first course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Production Machine Learning Systems course.

Más información

¿Cuáles son las prácticas recomendadas para implementar el aprendizaje automático en Google Cloud? ¿Qué es Vertex AI y cómo se puede utilizar la plataforma para crear, entrenar e implementar rápidamente modelos de aprendizaje automático de AutoML sin escribir una sola línea de código? ¿Qué es el aprendizaje automático? ¿Qué tipos de problemas puede solucionar? Google considera que el aprendizaje automático es diferente: se trata de proporcionar una plataforma unificada para conjuntos de datos administrados, un almacén de atributos, una forma de crear, entrenar e implementar modelos de aprendizaje automático sin escribir una sola línea de código, así como proporcionar la capacidad de etiquetar datos y crear notebooks de Workbench utilizando frameworks como TensorFlow, SciKit-learn, Pytorch, R y otros. Vertex AI Platform también ofrece la posibilidad de entrenar modelos personalizados, crear canalizaciones de componentes y realizar predicciones en línea y por lotes. Además, analiza…

Más información

En este curso, aprenderás sobre los productos y servicios de macrodatos y aprendizaje automático de Google Cloud involucrados en el ciclo de vida de datos a IA. También explorarás los procesos, los desafíos y los beneficios de crear una canalización de macrodatos y modelos de aprendizaje automático con Vertex AI en Google Cloud.

Más información