ANTARA CHATTERJEE
Miembro desde 2022
Liga de Oro
19745 puntos
Miembro desde 2022
En este curso, se va más allá de los conceptos básicos de Looker Studio y se exploran las potentes funciones de Looker Studio Pro. Aprende a utilizar los espacios de trabajo en equipo para colaborar con eficiencia, a mejorar la seguridad y administración de los datos, y a obtener ayuda a través de la Atención al cliente de Google Cloud. Descubre funciones premium que potenciarán tu capacidad para visualizar datos y generar informes. Este curso se diseñó para usuarios que ya tienen conocimientos básicos de Looker Studio y quieren aprovechar todo el potencial de la herramienta en sus organizaciones o empresas.
This workload aims to upskill Google Cloud partners to perform specific tasks for modernization using LookML on BigQuery. A proof-of-concept will take learners through the process of creating LookML visualizations on BigQuery. During this course, learners will be guided specifically on how to write Looker modeling language, also known as LookML and create semantic data models, and learn how LookML constructs SQL queries against BigQuery. At a high level, this course will focus on basic LookML to create and access BigQuery objects, and optimize BigQuery objects with LookML.
Welcome to Optimize in BigQuery, where we map Enterprise Data Warehouse concepts and components to BigQuery and Google data services with a focus on optimization.
Este curso ayuda a los participantes a crear un plan de estudio para el examen de certificación de PDE (Professional Data Engineer). Los alumnos conocerán la amplitud y el alcance de los dominios que se incluyen en el examen. Además, evaluarán su nivel de preparación para el examen y crearán un plan de estudio personal.
Completa la insignia de habilidad intermedia Crea un almacén de datos con BigQuery para demostrar tus habilidades para realizar las siguientes actividades: unir datos para crear tablas nuevas, solucionar problemas de uniones, agregar datos a uniones, crear tablas particionadas por fecha, y trabajar con JSON, arrays y structs en BigQuery.
Completa la insignia de habilidad introductoria Prepara datos para las APIs de AA en Google Cloud y demuestra tus habilidades para realizar las siguientes actividades: limpiar datos con Dataprep de Trifacta, ejecutar canalizaciones de datos en Dataflow, crear clústeres y ejecutar trabajos de Apache Spark en Dataproc y llamar a APIs de AA, como la API de Cloud Natural Language, la API de Google Cloud Speech-to-Text y la API de Video Intelligence.
Obtén la insignia de habilidad intermedia Ingeniería de datos para crear modelos predictivos con BigQuery ML y demuestra tus capacidades para crear canalizaciones de transformación de datos en BigQuery con Dataprep de Trifacta; usar Cloud Storage, Dataflow y BigQuery para crear flujos de trabajo de extracción, transformación y carga (ETL), y crear modelos de aprendizaje automático con BigQuery ML.
En esta última parte de la serie de cursos de Dataflow, presentaremos los componentes del modelo operativo de Dataflow. Examinaremos las herramientas y técnicas que permiten solucionar problemas y optimizar el rendimiento de las canalizaciones. Luego, revisaremos las prácticas recomendadas de las pruebas, la implementación y la confiabilidad en relación con las canalizaciones de Dataflow. Concluiremos con una revisión de las plantillas, que facilitan el ajuste de escala de las canalizaciones de Dataflow para organizaciones con cientos de usuarios. Estas clases asegurarán que su plataforma de datos sea estable y resiliente ante circunstancias inesperadas.
Este curso corresponde a la 1ª parte de una serie de 3 cursos llamada Procesamiento de datos sin servidores con Dataflow. Para comenzar, en el primer curso haremos un repaso de qué es Apache Beam y cómo se relaciona con Dataflow. Luego, hablaremos sobre la visión de Apache Beam y los beneficios que ofrece su framework de portabilidad. Dicho framework hace posible que un desarrollador pueda usar su lenguaje de programación favorito con su backend de ejecución preferido. Después, le mostraremos cómo Dataflow le permite separar el procesamiento y el almacenamiento y, a la vez, ahorrar dinero. También le explicaremos cómo las herramientas de identidad, acceso y administración interactúan con sus canalizaciones de Dataflow. Por último, veremos cómo implementar el modelo de seguridad adecuado en Dataflow según su caso de uso.
Completa la insignia de habilidad intermedia Crea una infraestructura con Terraform en Google Cloud y demuestra tus habilidades para realizar las siguientes actividades: aplicar los principios de la infraestructura como código (IaC) con Terraform; aprovisionar y administrar recursos de Google Cloud con parámetros de configuración de Terraform; realizar una administración de estado eficaz (local y remota) y modularizar el código de Terraform para la reutilización y la organización.
Completa la insignia de habilidad introductoria Implementa Cloud Load Balancing para Compute Engine y demuestra tus habilidades para realizar las siguientes actividades: crear y, luego, implementar máquinas virtuales en Compute Engine, y configurar balanceadores de cargas de red y de aplicaciones.
Para ganar una insignia de habilidad, completa el curso Configura un entorno de desarrollo de apps en Google Cloud. Allí aprenderás a crear y conectar una infraestructura de nube centrada en el almacenamiento usando las capacidades básicas de las siguientes tecnologías: Cloud Storage, Identity and Access Management, Cloud Functions y Pub/Sub.