Massipssa Kerrache
Учасник із 2022
Золота ліга
Кількість балів: 6620
Учасник із 2022
While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.
Курс "Знайомство з Google Cloud: основна інфраструктура" охоплює важливі поняття й терміни щодо використання Google Cloud. Переглядаючи відео й виконуючи практичні завдання, слухачі ознайомляться з різними сервісами Google Cloud для обчислень і зберігання даних, а також важливими ресурсами й інструментами для керування правилами. Крім того, вони зможуть їх порівнювати.
Курс "Знайомство з Google Cloud: основна інфраструктура" охоплює важливі поняття й терміни щодо використання Google Cloud. Переглядаючи відео й виконуючи практичні завдання, слухачі ознайомляться з різними сервісами Google Cloud для обчислень і зберігання даних, а також важливими ресурсами й інструментами для керування правилами. Крім того, вони зможуть їх порівнювати.
Complete the intermediate Build a Data Warehouse with BigQuery skill badge course to demonstrate skills in the following: joining data to create new tables, troubleshooting joins, appending data with unions, creating date-partitioned tables, and working with JSON, arrays, and structs in BigQuery.
In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
Під час курсу ви зможете ознайомитися з продуктами й сервісами Google Cloud для роботи з масивами даних і машинним навчанням, які підтримують життєвий цикл роботи з даними для тренування моделей штучного інтелекту. У курсі розглядаються процеси, проблеми й переваги створення конвеєру масиву даних і моделей машинного навчання з Vertex AI у Google Cloud.
While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.