가입 로그인

Nikhil Raj

회원 가입일: 2022

Smart Analytics, Machine Learning, and AI on Google Cloud - 한국어 Earned 12월 14, 2022 EST
Google Cloud에서 스트리밍 데이터 파이프라인 빌드하기 Earned 12월 7, 2022 EST
Google Cloud에서 데이터 레이크와 데이터 웨어하우스 빌드하기 Earned 3월 12, 2022 EST
Google Cloud Big Data and Machine Learning Fundamentals - 한국어 Earned 3월 9, 2022 EST

머신러닝을 데이터 파이프라인에 통합하면 데이터에서 더 많은 인사이트를 도출할 수 있습니다. 이 과정에서는 머신러닝을 Google Cloud의 데이터 파이프라인에 포함하는 방법을 알아봅니다. 맞춤설정이 거의 또는 전혀 필요 없는 경우에 적합한 AutoML에 대해 알아보고 맞춤형 머신러닝 기능이 필요한 경우를 위해 Notebooks 및 BigQuery 머신러닝(BigQuery ML)도 소개합니다. Vertex AI를 사용해 머신러닝 솔루션을 프로덕션화하는 방법도 다루어 보겠습니다.

자세히 알아보기

이 과정에서는 스트리밍 데이터 파이프라인을 빌드할 때 직면하는 실제 과제를 해결하기 위해 실습을 진행합니다. Google Cloud 제품을 사용하여 지속적이고 무제한적인 데이터를 관리하는 데 중점을 둡니다.

자세히 알아보기

데이터 레이크와 데이터 웨어하우스를 사용하는 기존 접근방식은 효과적일 수 있지만, 특히 대규모 엔터프라이즈 환경에서는 단점이 있습니다. 이 과정에서는 데이터 레이크하우스의 개념과 데이터 레이크하우스를 만드는 데 사용되는 Google Cloud 제품을 소개합니다. 레이크하우스 아키텍처는 개방형 표준 데이터 소스를 사용하며 데이터 레이크와 데이터 웨어하우스의 장점을 결합하여 많은 단점을 해결합니다.

자세히 알아보기

이 과정에서는 데이터-AI 수명 주기를 지원하는 Google Cloud 빅데이터 및 머신러닝 제품과 서비스를 소개합니다. Google Cloud에서 Vertex AI를 사용하여 빅데이터 파이프라인 및 머신러닝 모델을 빌드하는 프로세스, 문제점 및 이점을 살펴봅니다.

자세히 알아보기