Join Sign in

Sreenu Yakkali

Member since 2021

Diamond League

32466 points
Data Migration Tool Earned ספט 21, 2025 EDT
Understanding Google Cloud Security and Operations - בעברית Earned אוג 16, 2025 EDT
Trust and Security with Google Cloud Earned אוג 16, 2025 EDT
Innovating with Google Cloud Artificial Intelligence Earned אוג 16, 2025 EDT
Baseline: Infrastructure Earned מרץ 11, 2025 EDT
Google Cloud Computing Foundations: Cloud Computing Fundamentals Earned מרץ 11, 2025 EDT
Migrating Hadoop Workloads Earned דצמ 19, 2024 EST
Introduction to Data Engineering on Google Cloud Earned דצמ 5, 2024 EST
Serverless Data Processing with Dataflow: Foundations Earned נוב 21, 2024 EST
Build Batch Data Pipelines on Google Cloud Earned נוב 5, 2024 EST
Build Streaming Data Pipelines on Google Cloud Earned אוק 31, 2024 EDT
Search with AI Applications Earned נוב 3, 2023 EDT
Implementing Generative AI with Vertex AI Earned אוק 26, 2023 EDT
Text Prompt Engineering Techniques Earned אוק 16, 2023 EDT
Create Image Captioning Models - בעברית Earned אוק 15, 2023 EDT
Introduction to Generative AI Studio - בעברית Earned אוק 15, 2023 EDT
Transformer Models and BERT Model - בעברית Earned אוק 15, 2023 EDT
Encoder-Decoder Architecture - בעברית Earned אוק 15, 2023 EDT
Attention Mechanism - בעברית Earned אוק 15, 2023 EDT
Generative AI Explorer : Vertex AI Earned אוק 15, 2023 EDT
Responsible AI: Applying AI Principles with Google Cloud Earned אוק 12, 2023 EDT
Generative AI for Business Leaders Earned אוק 9, 2023 EDT
Introduction to Responsible AI - בעברית Earned ספט 27, 2023 EDT
Google Cloud Fundamentals: Core Infrastructure Earned ספט 25, 2023 EDT
Introduction to Large Language Models - בעברית Earned ספט 24, 2023 EDT
Generative AI Fundamentals Earned ספט 24, 2023 EDT
Introduction to Generative AI - בעברית Earned ספט 22, 2023 EDT
Introduction to Image Generation - בעברית Earned ספט 11, 2023 EDT
Certification Learning Path: Professional Cloud Architect Earned מאי 29, 2023 EDT
Implementing Cloud Load Balancing for Compute Engine Earned דצמ 4, 2022 EST
Google Cloud Essentials Earned דצמ 4, 2022 EST
Build Data Lakes and Data Warehouses on Google Cloud Earned נוב 14, 2022 EST
Infrastructure and Application Modernization with Google Cloud - בעברית Earned אוג 5, 2022 EDT
Innovating with Data and Google Cloud - בעברית Earned אוג 3, 2022 EDT
Digital Transformation with Google Cloud - בעברית Earned אוג 2, 2022 EDT
Cloud Hero IAM & Security Skills Earned ספט 15, 2021 EDT
Cloud Hero Data Skills Earned ספט 2, 2021 EDT
Cloud Hero Monitoring Skills Earned אוג 28, 2021 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned אוג 27, 2021 EDT
Kubernetes in Google Cloud Earned אוג 18, 2021 EDT
Cloud Hero Kubernetes Skills Earned אוג 18, 2021 EDT
Launching into Machine Learning Earned אוג 10, 2021 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned יול 24, 2021 EDT

This workload aims to upskill Google Cloud partners to perform specific tasks associated with migrating from an Enterprise Data Warehouse (EDW) to BigQuery using the DMT tool and sample data. Learners will complete a lab that uses the DMT tool to transfer schema and data from Teradata to BigQuery.

Learn more

הקורס בוחן ניהול עלויות, אבטחה ותפעול בענן. ראשית, מוסבר איך עסקים יכולים לרכוש שירותי IT מספק שירותי ענן ולשמר חלק מהתשתית שלהם או לבחור לא לשמר אותה בכלל. שנית, הקורס מתאר איך האחריות על אבטחת נתונים מתחלקת בין ספק שירותי הענן לעסק, וסוקר את אבטחת ההגנה לעומק (defense-in-depth) שמובנית ב-Google Cloud. לבסוף, הקורס מתייחס לכך שצוותי IT ומנהלי העסק צריכים לשנות את החשיבה על ניהול משאבי IT בענן, ונוגע באופן שבו כלי ניטור המשאבים ב-Google Cloud יכולים לסייע להם לשמור על שליטה וניראות בסביבת הענן שלהם.

Learn more

As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Learn more

Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Learn more

If you are a novice cloud developer looking for hands-on practice beyond Google Cloud Essentials, this course is for you. You will get practical experience through labs that dive into Cloud Storage and other key application services like Monitoring and Cloud Functions. You will develop valuable skills that are applicable to any Google Cloud initiative. 1-minute videos walk you through key concepts for these labs.

Learn more

The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This first course provides an overview of cloud computing, ways to use Google Cloud, and different compute options.

Learn more

This workload aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks of migrating workloads from Hadoop environments to corresponding Google Cloud services and hosted products. The following will addressed will be: The Hadoop ecosystem and products Hadoop architecture and post migration architectures to Google Cloud Assessment Data transfer options Workload migrations, namely: Spark to Dataproc Serverless, Apache Oozie to Composer (Airflow), and Hive to BigQuery Security and governance Logging and Monitoring

Learn more

In this course, you learn about data engineering on Google Cloud, the roles and responsibilities of data engineers, and how those map to offerings provided by Google Cloud. You also learn about ways to address data engineering challenges.

Learn more

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Learn more

In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.

Learn more

In this course you will get hands-on in order to work through real-world challenges faced when building streaming data pipelines. The primary focus is on managing continuous, unbounded data with Google Cloud products.

Learn more

(Previously named "Developing apps with Vertex AI Agent Builder: Search". Please note there maybe instances in this course where previous product names and titles are used) Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use AI Applications to integrate enterprise-grade generative AI search.

Learn more

This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.

Learn more

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

Learn more

בקורס הזה תלמדו איך ליצור מודל הוספת כיתוב לתמונה באמצעות למידה עמוקה (Deep Learning). אתם תלמדו על הרכיבים השונים במודל הוספת כיתוב לתמונה, כמו המקודד והמפענח, ואיך לאמן את המודל ולהעריך את הביצועים שלו. בסוף הקורס תוכלו ליצור מודלים להוספת כיתוב לתמונה ולהשתמש בהם כדי ליצור כיתובים לתמונות

Learn more

בקורס הזה נלמד על Generative AI Studio, מוצר ב-Vertex AI שעוזר ליצור אבות טיפוס למודלים של בינה מלאכותית גנרטיבית, כדי להשתמש בהם ולהתאים אותם לפי הצרכים שלכם. באמצעות הדגמה של המוצר עצמו, נלמד מהו Generative AI Studio, מהם הפיצ'רים והאפשרויות שלו, ואיך להשתמש בו. בסוף הקורס יהיה שיעור Lab מעשי לתרגול של מה שנלמד, ובוחן לבדיקת הידע.

Learn more

בקורס הזה נציג את הארכיטקטורה של טרנספורמרים ואת המודל של ייצוגים דו-כיווניים של מקודד מטרנספורמרים (BERT). תלמדו על החלקים השונים בארכיטקטורת הטרנספורמר, כמו מנגנון תשומת הלב, ועל התפקיד שלו בבניית מודל BERT. תלמדו גם על המשימות השונות שאפשר להשתמש ב-BERT כדי לבצע אותן, כמו סיווג טקסטים, מענה על שאלות והֶקֵּשׁ משפה טבעית. נדרשות כ-45 דקות כדי להשלים את הקורס הזה.

Learn more

בקורס הזה לומדים בקצרה על ארכיטקטורת מקודד-מפענח, ארכיטקטורה עוצמתית ונפוצה ללמידת מכונה שמשתמשים בה במשימות של רצף לרצף, כמו תרגום אוטומטי, סיכום טקסט ומענה לשאלות. תלמדו על החלקים השונים בארכיטקטורת מקודד-מפענח, איך לאמן את המודלים האלה ואיך להשתמש בהם. בהדרכה המפורטת המשלימה בשיעור ה-Lab תקודדו ב-TensorFlow תרחיש שימוש פשוט בארכיטקטורת מקודד-מפענח: כתיבת שיר מאפס.

Learn more

בקורס נלמד על מנגנון תשומת הלב, שיטה טובה מאוד שמאפשרת לרשתות נוירונים להתמקד בחלקים ספציפיים ברצף הקלט. נלמד איך עובד העיקרון של תשומת הלב, ואיך אפשר להשתמש בו כדי לשפר את הביצועים במגוון משימות של למידת מכונה, כולל תרגום אוטומטי, סיכום טקסט ומענה לשאלות.

Learn more

This content is deprecated. Please see the latest version of the course, here.

Learn more

As the use of enterprise Artificial Intelligence and Machine Learning continues to grow, so too does the importance of building it responsibly. A challenge for many is that talking about responsible AI can be easier than putting it into practice. If you’re interested in learning how to operationalize responsible AI in your organization, this course is for you. In this course, you will learn how Google Cloud does this today, together with best practices and lessons learned, to serve as a framework for you to build your own responsible AI approach.

Learn more

A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.

Learn more

זהו קורס מבוא ממוקד שמטרתו להסביר מהי אתיקה של בינה מלאכותית, למה היא חשובה ואיך Google נוהגת לפי כללי האתיקה של הבינה המלאכותית במוצרים שלה. מוצגים בו גם 7 עקרונות ה-AI של Google.

Learn more

Google Cloud Fundamentals: Core Infrastructure introduces important concepts and terminology for working with Google Cloud. Through videos and hands-on labs, this course presents and compares many of Google Cloud's computing and storage services, along with important resource and policy management tools.

Learn more

זהו קורס מבוא ממוקד שבוחן מהם מודלים גדולים של שפה (LLM), איך משתמשים בהם בתרחישים שונים לדוגמה ואיך אפשר לשפר את הביצועים שלהם באמצעות כוונון של הנחיות. הוא גם כולל הסבר על הכלים של Google שיעזרו לכם לפתח אפליקציות בינה מלאכותית גנרטיבית משלכם.

Learn more

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

Learn more

זהו קורס מבוא ממוקד שמטרתו להסביר מהי בינה מלאכותית גנרטיבית, איך משתמשים בה ובמה היא שונה משיטות מסורתיות של למידת מכונה. הוא גם כולל הסבר על הכלים של Google שיעזרו לכם לפתח אפליקציות בינה מלאכותית גנרטיבית משלכם.

Learn more

בקורס נלמד על מודלים של דיפוזיה, משפחת מודלים של למידת מכונה שיצרו הרבה ציפיות לאחרונה בתחום של יצירת תמונות. מודלים של דיפוזיה שואבים השראה מפיזיקה, וספציפית מתרמודינמיקה. בשנים האחרונות, מודלים של דיפוזיה הפכו לפופולריים גם בתחום המחקר וגם בתעשייה. מודלים של דיפוזיה עומדים מאחורי הרבה מהכלים והמודלים החדשניים ליצירת תמונות ב-Google Cloud. בקורס הזה נלמד על התיאוריה שמאחורי מודלים של דיפוזיה, ואיך לאמן ולפרוס אותם ב-Vertex AI.

Learn more

Good news! There’s a new updated version of this learning path available for you!Open the new Professional Cloud Architect Certification Learning Path to begin, once you’ve selected the new path all your current progress will be reflected in the new version.

Learn more

Complete the introductory Implementing Cloud Load Balancing for Compute Engine skill badge to demonstrate skills in the following: creating and deploying virtual machines in Compute Engine and configuring network and application load balancers.

Learn more

In this introductory-level course, you get hands-on practice with the Google Cloud’s fundamental tools and services. Optional videos are provided to provide more context and review for the concepts covered in the labs. Google Cloud Essentials is a recommendeded first course for the Google Cloud learner - you can come in with little or no prior cloud knowledge, and come out with practical experience that you can apply to your first Google Cloud project. From writing Cloud Shell commands and deploying your first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features.

Learn more

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

Learn more

בארגונים מסורתיים רבים משתמשים במערכות ובאפליקציות מדורות קודמים, וקשה לבצע באמצעותן התאמה לעומס ופעולות מהירות הדרושות כדי לעמוד בציפיות מודרניות של לקוחות. מנהיגים עסקיים וקובעי מדיניות IT צריכים כל הזמן לבחור בין תחזוקה של מערכות מדורות קודמים לבין השקעה במוצרים ובשירותים חדשים. בקורס הזה נבחן את האתגרים הנובעים משימוש בתשתית IT מיושנת, ואיך בעלי עסקים יכולים לבצע מודרניזציה של תשתיות בעזרת טכנולוגיית ענן. הקורס מתחיל בהבנה מעמיקה של אפשרויות המחשוב השונות הזמינות בענן ופירוט היתרונות של כל אחת מהאפשרויות. לאחר מכן נבחן את האפשרויות למודרניזציה של האפליקציות ושל ממשקי API (ממשק תכנות יישומים). בקורס מתוארים גם מגוון פתרונות של Google Cloud שיכולים לשפר את תהליך פיתוח המערכות וניהולן בעסקים שונים, כמו Compute Engine,‏ App Engine ו-Apigee.

Learn more

טכנולוגיית הענן לבדה מספקת לעסק חלק קטן בלבד מהערך האמיתי שלה. כשהיא משולבת עם נתונים בנפח רב מאוד, נוצרת העוצמה שמאפשרת להפיק ערך וליצור חוויות חדשות ללקוחות. במסגרת הקורס הזה תלמדו מהם נתונים, איך השתמשו בהם בעבר בחברות לצורך קבלת החלטות ולמה הם קריטיים כל כך ללמידה חישובית. בנוסף, בקורס הזה יוצגו ללומדים מושגים טכניים כמו נתונים מובְנים ולא מובְנים, מסד נתונים, מחסן נתונים (data warehouse) ואגמי נתונים (data lakes). בהמשך, הקורס יעסוק במוצרי Google Cloud הנפוצים ביותר בתחום הנתונים, ובמוצרים כאלה ששיעור השימוש בהם גדל במהירות הרבה ביותר.

Learn more

מהי טכנולוגיית ענן ומהו מדע הנתונים? וחשוב יותר, איך הם יכולים לעזור לכם, לצוות שלכם ולעסק שלכם? קורס המבוא הזה בנושא טרנספורמציה דיגיטלית מתאים למי שרוצה ללמוד על טכנולוגיית הענן כדי להתמקצע ולהצטיין בעבודתו וכדי לעזור בפיתוח העתיד של העסק. בקורס יוגדרו מונחי יסוד כגון הענן, נתונים וטרנספורמציה דיגיטלית. בנוסף, נבחן דוגמאות של חברות מרחבי העולם שמשתמשות בטכנולוגיית הענן כדי לבצע טרנספורמציה בעסק. הקורס כולל סקירה של סוגי ההזדמנויות שיש לחברות ושל האתגרים הנפוצים שחברות מתמודדות איתם במהלך טרנספורמציה דיגיטלית. הקורס גם מדגים איך עמודי התווך של פתרונות Google Cloud יכולים לעזור בתהליך. חשוב לומר: טרנספורמציה דיגיטלית לא קשורה רק לשימוש בטכנולוגיות חדשות. כדי הטרנספורמציה תהיה מלאה, ארגונים צריכים גם ליישם חדשנות ולפתח דפוס חשיבה שמקדם חדשנות בכל התחומים והצוותים. השיטות המומלצות המתוארות בקורס יעזרו לכם להשיג את המטרה הזו.

Learn more

Get hands-on practice with Google Cloud! You will compete with your peers to see who can finish this game with the most points. Speed and accuracy will be used to calculate your scores — earn points by completing the labs accurately and bonus points for speed! Be sure to click “End” where you’re done with each lab to be rewarded your points.

Learn more

Get hands-on practice with Google Cloud! You will compete with your peers to see who can finish this game with the most points. Speed and accuracy will be used to calculate your scores — earn points by completing the labs accurately and bonus points for speed! Be sure to click “End” where you’re done with each lab to be rewarded your points.

Learn more

Get hands-on practice with Google Cloud! You will compete with your peers to see who can finish this game with the most points. Earn points by completing the labs accurately and receive bonus points for speed! Be sure to click “End” where you’re done with each lab to be rewarded your points.

Learn more

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Learn more

Kubernetes is the most popular container orchestration system, and Google Kubernetes Engine was designed specifically to support managed Kubernetes deployments in Google Cloud. In this course, you will get hands-on practice configuring Docker images, containers, and deploying fully-fledged Kubernetes Engine applications.

Learn more

Get hands-on practice with Google Cloud! You will compete with your peers to see who can finish this game with the most points. Speed and accuracy will be used to calculate your scores — earn points by completing the labs accurately and bonus points for speed! Be sure to click “End” where you’re done with each lab to be rewarded your points.

Learn more

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

Learn more

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Learn more