Join Sign in

Sreenu Yakkali

Member since 2021

Diamond League

32466 points
Data Migration Tool Earned سبتمبر 21, 2025 EDT
Scaling with Google Cloud Operations Earned أغسطس 16, 2025 EDT
Trust and Security with Google Cloud Earned أغسطس 16, 2025 EDT
Innovating with Google Cloud Artificial Intelligence Earned أغسطس 16, 2025 EDT
Baseline: Infrastructure Earned مارس 11, 2025 EDT
Google Cloud Computing Foundations: Cloud Computing Fundamentals Earned مارس 11, 2025 EDT
Migrating Hadoop Workloads Earned ديسمبر 19, 2024 EST
Introduction to Data Engineering on Google Cloud Earned ديسمبر 5, 2024 EST
Serverless Data Processing with Dataflow: Foundations Earned نوفمبر 21, 2024 EST
Build Batch Data Pipelines on Google Cloud Earned نوفمبر 5, 2024 EST
Build Streaming Data Pipelines on Google Cloud Earned أكتوبر 31, 2024 EDT
Search with AI Applications Earned نوفمبر 3, 2023 EDT
Implementing Generative AI with Vertex AI Earned أكتوبر 26, 2023 EDT
Text Prompt Engineering Techniques Earned أكتوبر 16, 2023 EDT
Create Image Captioning Models Earned أكتوبر 15, 2023 EDT
Introduction to Vertex AI Studio Earned أكتوبر 15, 2023 EDT
Transformer Models and BERT Model Earned أكتوبر 15, 2023 EDT
Encoder-Decoder Architecture Earned أكتوبر 15, 2023 EDT
Attention Mechanism Earned أكتوبر 15, 2023 EDT
Generative AI Explorer : Vertex AI Earned أكتوبر 15, 2023 EDT
Responsible AI: Applying AI Principles with Google Cloud Earned أكتوبر 12, 2023 EDT
Generative AI for Business Leaders Earned أكتوبر 9, 2023 EDT
Introduction to Responsible AI Earned سبتمبر 27, 2023 EDT
Google Cloud Fundamentals: Core Infrastructure Earned سبتمبر 25, 2023 EDT
Introduction to Large Language Models Earned سبتمبر 24, 2023 EDT
Generative AI Fundamentals Earned سبتمبر 24, 2023 EDT
Introduction to Generative AI Earned سبتمبر 22, 2023 EDT
Introduction to Image Generation Earned سبتمبر 11, 2023 EDT
Certification Learning Path: Professional Cloud Architect Earned مايو 29, 2023 EDT
Implementing Cloud Load Balancing for Compute Engine Earned ديسمبر 4, 2022 EST
Google Cloud Essentials Earned ديسمبر 4, 2022 EST
Build Data Lakes and Data Warehouses on Google Cloud Earned نوفمبر 14, 2022 EST
Modernize Infrastructure and Applications with Google Cloud Earned أغسطس 5, 2022 EDT
Exploring Data Transformation with Google Cloud Earned أغسطس 3, 2022 EDT
Digital Transformation with Google Cloud Earned أغسطس 2, 2022 EDT
Cloud Hero IAM & Security Skills Earned سبتمبر 15, 2021 EDT
Cloud Hero Data Skills Earned سبتمبر 2, 2021 EDT
Cloud Hero Monitoring Skills Earned أغسطس 28, 2021 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned أغسطس 27, 2021 EDT
Kubernetes in Google Cloud Earned أغسطس 18, 2021 EDT
Cloud Hero Kubernetes Skills Earned أغسطس 18, 2021 EDT
Launching into Machine Learning Earned أغسطس 10, 2021 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned يوليو 24, 2021 EDT

This workload aims to upskill Google Cloud partners to perform specific tasks associated with migrating from an Enterprise Data Warehouse (EDW) to BigQuery using the DMT tool and sample data. Learners will complete a lab that uses the DMT tool to transfer schema and data from Teradata to BigQuery.

Learn more

Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Learn more

As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Learn more

Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Learn more

If you are a novice cloud developer looking for hands-on practice beyond Google Cloud Essentials, this course is for you. You will get practical experience through labs that dive into Cloud Storage and other key application services like Monitoring and Cloud Functions. You will develop valuable skills that are applicable to any Google Cloud initiative. 1-minute videos walk you through key concepts for these labs.

Learn more

The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This first course provides an overview of cloud computing, ways to use Google Cloud, and different compute options.

Learn more

This workload aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks of migrating workloads from Hadoop environments to corresponding Google Cloud services and hosted products. The following will addressed will be: The Hadoop ecosystem and products Hadoop architecture and post migration architectures to Google Cloud Assessment Data transfer options Workload migrations, namely: Spark to Dataproc Serverless, Apache Oozie to Composer (Airflow), and Hive to BigQuery Security and governance Logging and Monitoring

Learn more

In this course, you learn about data engineering on Google Cloud, the roles and responsibilities of data engineers, and how those map to offerings provided by Google Cloud. You also learn about ways to address data engineering challenges.

Learn more

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Learn more

In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.

Learn more

In this course you will get hands-on in order to work through real-world challenges faced when building streaming data pipelines. The primary focus is on managing continuous, unbounded data with Google Cloud products.

Learn more

(Previously named "Developing apps with Vertex AI Agent Builder: Search". Please note there maybe instances in this course where previous product names and titles are used) Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use AI Applications to integrate enterprise-grade generative AI search.

Learn more

This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.

Learn more

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

Learn more

This course teaches you how to create an image captioning model by using deep learning. You learn about the different components of an image captioning model, such as the encoder and decoder, and how to train and evaluate your model. By the end of this course, you will be able to create your own image captioning models and use them to generate captions for images

Learn more

This course introduces Vertex AI Studio, a tool to interact with generative AI models, prototype business ideas, and launch them into production. Through an immersive use case, engaging lessons, and a hands-on lab, you’ll explore the prompt-to-product lifecycle and learn how to leverage Vertex AI Studio for Gemini multimodal applications, prompt design, prompt engineering, and model tuning. The aim is to enable you to unlock the potential of gen AI in your projects with Vertex AI Studio.

Learn more

This course introduces you to the Transformer architecture and the Bidirectional Encoder Representations from Transformers (BERT) model. You learn about the main components of the Transformer architecture, such as the self-attention mechanism, and how it is used to build the BERT model. You also learn about the different tasks that BERT can be used for, such as text classification, question answering, and natural language inference.This course is estimated to take approximately 45 minutes to complete.

Learn more

This course gives you a synopsis of the encoder-decoder architecture, which is a powerful and prevalent machine learning architecture for sequence-to-sequence tasks such as machine translation, text summarization, and question answering. You learn about the main components of the encoder-decoder architecture and how to train and serve these models. In the corresponding lab walkthrough, you’ll code in TensorFlow a simple implementation of the encoder-decoder architecture for poetry generation from the beginning.

Learn more

This course will introduce you to the attention mechanism, a powerful technique that allows neural networks to focus on specific parts of an input sequence. You will learn how attention works, and how it can be used to improve the performance of a variety of machine learning tasks, including machine translation, text summarization, and question answering. This course is estimated to take approximately 45 minutes to complete.

Learn more

This content is deprecated. Please see the latest version of the course, here.

Learn more

As the use of enterprise Artificial Intelligence and Machine Learning continues to grow, so too does the importance of building it responsibly. A challenge for many is that talking about responsible AI can be easier than putting it into practice. If you’re interested in learning how to operationalize responsible AI in your organization, this course is for you. In this course, you will learn how Google Cloud does this today, together with best practices and lessons learned, to serve as a framework for you to build your own responsible AI approach.

Learn more

A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.

Learn more

This is an introductory-level microlearning course aimed at explaining what responsible AI is, why it's important, and how Google implements responsible AI in their products. It also introduces Google's 3 AI principles.

Learn more

Google Cloud Fundamentals: Core Infrastructure introduces important concepts and terminology for working with Google Cloud. Through videos and hands-on labs, this course presents and compares many of Google Cloud's computing and storage services, along with important resource and policy management tools.

Learn more

This is an introductory level micro-learning course that explores what large language models (LLM) are, the use cases where they can be utilized, and how you can use prompt tuning to enhance LLM performance. It also covers Google tools to help you develop your own Gen AI apps.

Learn more

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

Learn more

This is an introductory level microlearning course aimed at explaining what Generative AI is, how it is used, and how it differs from traditional machine learning methods. It also covers Google Tools to help you develop your own Gen AI apps.

Learn more

This course introduces diffusion models, a family of machine learning models that recently showed promise in the image generation space. Diffusion models draw inspiration from physics, specifically thermodynamics. Within the last few years, diffusion models became popular in both research and industry. Diffusion models underpin many state-of-the-art image generation models and tools on Google Cloud. This course introduces you to the theory behind diffusion models and how to train and deploy them on Vertex AI.

Learn more

Good news! There’s a new updated version of this learning path available for you!Open the new Professional Cloud Architect Certification Learning Path to begin, once you’ve selected the new path all your current progress will be reflected in the new version.

Learn more

Complete the introductory Implementing Cloud Load Balancing for Compute Engine skill badge to demonstrate skills in the following: creating and deploying virtual machines in Compute Engine and configuring network and application load balancers.

Learn more

In this introductory-level course, you get hands-on practice with the Google Cloud’s fundamental tools and services. Optional videos are provided to provide more context and review for the concepts covered in the labs. Google Cloud Essentials is a recommendeded first course for the Google Cloud learner - you can come in with little or no prior cloud knowledge, and come out with practical experience that you can apply to your first Google Cloud project. From writing Cloud Shell commands and deploying your first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features.

Learn more

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

Learn more

Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Learn more

Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Learn more

There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.

Learn more

Get hands-on practice with Google Cloud! You will compete with your peers to see who can finish this game with the most points. Speed and accuracy will be used to calculate your scores — earn points by completing the labs accurately and bonus points for speed! Be sure to click “End” where you’re done with each lab to be rewarded your points.

Learn more

Get hands-on practice with Google Cloud! You will compete with your peers to see who can finish this game with the most points. Speed and accuracy will be used to calculate your scores — earn points by completing the labs accurately and bonus points for speed! Be sure to click “End” where you’re done with each lab to be rewarded your points.

Learn more

Get hands-on practice with Google Cloud! You will compete with your peers to see who can finish this game with the most points. Earn points by completing the labs accurately and receive bonus points for speed! Be sure to click “End” where you’re done with each lab to be rewarded your points.

Learn more

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Learn more

Kubernetes is the most popular container orchestration system, and Google Kubernetes Engine was designed specifically to support managed Kubernetes deployments in Google Cloud. In this course, you will get hands-on practice configuring Docker images, containers, and deploying fully-fledged Kubernetes Engine applications.

Learn more

Get hands-on practice with Google Cloud! You will compete with your peers to see who can finish this game with the most points. Speed and accuracy will be used to calculate your scores — earn points by completing the labs accurately and bonus points for speed! Be sure to click “End” where you’re done with each lab to be rewarded your points.

Learn more

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

Learn more

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Learn more