Gabung Login

Ramiro Gonzalo Duran

Menjadi anggota sejak 2022

Silver League

4015 poin
Transform and Clean your Data with Dataprep by Alteryx on Google Cloud Earned Feb 21, 2023 EST
Dasar pengukuran: Data, ML, AI Earned Feb 20, 2023 EST
Rekayasa Data untuk Pembuatan Model Prediktif dengan BigQuery ML Earned Nov 20, 2022 EST
Membangun Data Warehouse dengan BigQuery Earned Nov 15, 2022 EST
Mengimplementasikan Cloud Load Balancing untuk Compute Engine Earned Nov 15, 2022 EST
Menyiapkan Data untuk ML API di Google Cloud Earned Nov 13, 2022 EST
Serverless Data Processing with Dataflow: Foundations Earned Nov 9, 2022 EST
Build Data Lakes and Data Warehouses on Google Cloud Earned Nov 2, 2022 EDT
Build Batch Data Pipelines on Google Cloud Earned Okt 28, 2022 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned Okt 18, 2022 EDT

Dataprep is Google's self-service data preparation tool built in collaboration with Alteryx. Learn the basics of cleaning and preparing data for analysis and visualization, all in the Google ecosystem. In this course, you will learn how to connect Dataprep to your data in Cloud Storage and BigQuery, clean data using the interactive UI, profile the data, and publish your results back into the Google ecosystem. You will learn the basics of data transformation, including filtering values, reshaping the data, combining multiple datasets, deriving new values, and aggregating your dataset.

Pelajari lebih lanjut

Big data, machine learning, dan kecerdasan buatan menjadi topik komputasi yang populer saat ini, tetapi bidang tersebut sangat terspesialisasi dan materi pengantarnya sulit diperoleh. Untungnya, Google Cloud menyediakan layanan yang mudah digunakan dalam bidang tersebut, dan melalui kursus tingkat pengantar ini, Anda dapat mengambil langkah pertama dengan alat seperti BigQuery, Cloud Speech API, dan Video Intelligence.

Pelajari lebih lanjut

Selesaikan badge keahlian tingkat menengah Rekayasa Data untuk Pembuatan Model Prediktif dengan BigQuery ML untuk menunjukkan keterampilan Anda dalam hal berikut: membangun pipeline transformasi data ke BigQuery dengan Dataprep by Trifacta; menggunakan Cloud Storage, Dataflow, dan BigQuery untuk membangun alur kerja ekstrak, transformasi, dan pemuatan (ETL); serta membangun model machine learning menggunakan BigQuery ML.

Pelajari lebih lanjut

Selesaikan badge keahlian tingkat menengah Membangun Data Warehouse dengan BigQuery untuk menunjukkan keterampilan Anda dalam hal berikut: menggabungkan data untuk membuat tabel baru, memecahkan masalah penggabungan, menambahkan data dengan union, membuat tabel berpartisi tanggal, serta menggunakan JSON, array, dan struct di BigQuery.

Pelajari lebih lanjut

Selesaikan badge keahlian pengantar Mengimplementasikan Cloud Load Balancing untuk Compute Engine untuk menunjukkan keterampilan dalam hal berikut: membuat dan men-deploy virtual machine di Compute Engine serta mengonfigurasi load balancer aplikasi dan jaringan.

Pelajari lebih lanjut

Selesaikan badge keahlian pengantar Menyiapkan Data untuk ML API di Google Cloud untuk menunjukkan keterampilan Anda dalam hal berikut: menghapus data dengan Dataprep by Trifacta, menjalankan pipeline data di Dataflow, membuat cluster dan menjalankan tugas Apache Spark di Dataproc, dan memanggil beberapa ML API, termasuk Cloud Natural Language API, Google Cloud Speech-to-Text API, dan Video Intelligence API.

Pelajari lebih lanjut

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Pelajari lebih lanjut

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

Pelajari lebih lanjut

In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.

Pelajari lebih lanjut

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Pelajari lebih lanjut