Rejoindre Se connecter

Ramiro Gonzalo Duran

Date d'abonnement : 2022

Ligue d'Argent

4015 points
Transform and Clean your Data with Dataprep by Alteryx on Google Cloud Earned fév. 21, 2023 EST
Baseline: Data, ML, AI Earned fév. 20, 2023 EST
Engineer Data for Predictive Modeling with BigQuery ML Earned nov. 20, 2022 EST
Build a Data Warehouse with BigQuery Earned nov. 15, 2022 EST
Implementing Cloud Load Balancing for Compute Engine Earned nov. 15, 2022 EST
Prepare Data for ML APIs on Google Cloud Earned nov. 13, 2022 EST
Serverless Data Processing with Dataflow: Foundations Earned nov. 9, 2022 EST
Build Data Lakes and Data Warehouses on Google Cloud Earned nov. 2, 2022 EDT
Build Batch Data Pipelines on Google Cloud Earned oct. 28, 2022 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned oct. 18, 2022 EDT

Dataprep is Google's self-service data preparation tool built in collaboration with Alteryx. Learn the basics of cleaning and preparing data for analysis and visualization, all in the Google ecosystem. In this course, you will learn how to connect Dataprep to your data in Cloud Storage and BigQuery, clean data using the interactive UI, profile the data, and publish your results back into the Google ecosystem. You will learn the basics of data transformation, including filtering values, reshaping the data, combining multiple datasets, deriving new values, and aggregating your dataset.

En savoir plus

Big data, machine learning, and artificial intelligence are today’s hot computing topics, but these fields are quite specialized and introductory material is hard to come by. Fortunately, Google Cloud provides user-friendly services in these areas, and with this introductory-level quest, so you can take your first steps with tools like Big Query, Cloud Speech API and Video Intelligence. Want extra help? 1-minute videos walk you through key concepts for each lab.

En savoir plus

Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML.

En savoir plus

Complete the intermediate Build a Data Warehouse with BigQuery skill badge course to demonstrate skills in the following: joining data to create new tables, troubleshooting joins, appending data with unions, creating date-partitioned tables, and working with JSON, arrays, and structs in BigQuery.

En savoir plus

Complete the introductory Implementing Cloud Load Balancing for Compute Engine skill badge to demonstrate skills in the following: creating and deploying virtual machines in Compute Engine and configuring network and application load balancers.

En savoir plus

Complete the introductory Prepare Data for ML APIs on Google Cloud skill badge to demonstrate skills in the following: cleaning data with Dataprep by Trifacta, running data pipelines in Dataflow, creating clusters and running Apache Spark jobs in Dataproc, and calling ML APIs including the Cloud Natural Language API, Google Cloud Speech-to-Text API, and Video Intelligence API.

En savoir plus

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

En savoir plus

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

En savoir plus

In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.

En savoir plus

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

En savoir plus