Bruno Silva Saba
成为会员时间:2021
青铜联赛
3210 积分
成为会员时间:2021
This course, Analyzing and Visualizing Data in Looker - Locales, is intended for non-English learners only. If you wish to take this content in English, please enroll in Analyzing and Visualizing Data in Looker. This course enables you to upscale your data warehouse solutions with an introduction to Looker for data exploration, analysis, and visualization. Upon completing this course, you will be able to start exploring your organization’s Looker instance and analyzing the available data to create shareable visualizations and reports.
完成入门级技能徽章课程为 Compute Engine 实现云负载均衡,展示以下方面的技能: 在 Compute Engine 中创建和部署虚拟机 以及配置网络和应用负载均衡器。
完成中级技能徽章课程利用 BigQuery ML 构建预测模型时的数据工程处理, 展示自己在以下方面的技能:利用 Dataprep by Trifacta 构建 BigQuery 数据转换流水线; 利用 Cloud Storage、Dataflow 和 BigQuery 构建提取、转换和加载 (ETL) 工作流; 以及利用 BigQuery ML 构建机器学习模型。
完成“在 Google Cloud 上设置应用开发环境”课程,赢取技能徽章;通过该课程,您将了解如何使用以下技术的基本功能来构建和连接以存储为中心的云基础设施: Cloud Storage、Identity and Access Management、Cloud Functions 和 Pub/Sub。
如果您是一位入门级云开发者, 在学习了“Google Cloud 基础知识”课程之后,想要寻求真正的实操机会,这门课程就是您的不二之选。您将获得宝贵的实操经验, 通过多个实验深入探索 Cloud Storage 以及 Monitoring 和 Cloud Functions 等其他关键应用服务。您将掌握一系列宝贵技能, 在 Google Cloud 的任何计划中,这些技能都能发挥作用。
Welcome Gamers! Learn BigQuery and Cloud SQL, all while having fun! You will compete to see who can finish the game with the highest score. Earn the points by completing the steps in the lab.... and get bonus points for speed! Be sure to click "End" when you're done with each lab to get the maximum points. All players will be awarded the game badge.
完成入门级技能徽章课程在 Google Cloud 上为机器学习 API 准备数据,展示以下技能: 使用 Dataprep by Trifacta 清理数据、在 Dataflow 中运行数据流水线、在 Dataproc 中创建集群和运行 Apache Spark 作业,以及调用机器学习 API,包括 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。
While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.