Приєднатися Увійти

Bruno Silva Saba

Учасник із 2021

Бронзова ліга

Кількість балів: 3210
Analyzing and Visualizing Data in Looker - Locales Earned січ. 4, 2023 EST
Налаштування Cloud Load Balancing для Compute Engine Earned трав. 17, 2022 EDT
Engineer Data for Predictive Modeling with BigQuery ML Earned трав. 13, 2022 EDT
Налаштування середовища для розробки додатка в Google Cloud Earned квіт. 27, 2022 EDT
Початок роботи з інфраструктурою Earned квіт. 27, 2022 EDT
BigQuery for Data Analysis I Earned лют. 23, 2022 EST
Підготовка даних для інтерфейсів API машинного навчання в Google Cloud Earned лист. 12, 2021 EST
Build Data Lakes and Data Warehouses on Google Cloud Earned жовт. 29, 2021 EDT
Google Cloud Big Data and Machine Learning Fundamentals - українська Earned жовт. 8, 2021 EDT

This course, Analyzing and Visualizing Data in Looker - Locales, is intended for non-English learners only. If you wish to take this content in English, please enroll in Analyzing and Visualizing Data in Looker. This course enables you to upscale your data warehouse solutions with an introduction to Looker for data exploration, analysis, and visualization. Upon completing this course, you will be able to start exploring your organization’s Looker instance and analyzing the available data to create shareable visualizations and reports.

Докладніше

Пройдіть вступний кваліфікаційний курс Налаштування Cloud Load Balancing для Compute Engine, щоб продемонструвати свої навички: створення й розгортання віртуальних машин у Compute Engine; налаштування мережі й розподілювачів навантаження додатків.

Докладніше

Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML.

Докладніше

Щоб отримати кваліфікаційний значок, пройдіть курс Налаштування середовища для розробки додатка в Google Cloud. У ньому ви навчитеся створювати й підключати хмарну інфраструктуру, спрямовану на зберігання даних, за допомогою базових можливостей таких технологій, як Cloud Storage, система керування ідентифікацією і доступом, Cloud Functions та Pub/Sub.

Докладніше

Якщо ви лише пробуєте розробляти хмарні рішення й шукаєте практичні заняття на додаток до кваліфікаційного курсу "Знайомство з Google Cloud", тоді цей курс саме для вас. Ви отримаєте прикладний досвід завдяки практичним заняттям, присвяченим Cloud Storage і іншим ключовим сервісам додатків, як-от Monitoring і Cloud Functions. Ви отримаєте цінні навички, які можна застосовувати в будь-яких проєктах Google Cloud.

Докладніше

Welcome Gamers! Learn BigQuery and Cloud SQL, all while having fun! You will compete to see who can finish the game with the highest score. Earn the points by completing the steps in the lab.... and get bonus points for speed! Be sure to click "End" when you're done with each lab to get the maximum points. All players will be awarded the game badge.

Докладніше

Пройдіть вступний кваліфікаційний курс Підготовка даних для інтерфейсів API машинного навчання в Google Cloud, щоб продемонструвати свої навички щодо очистки даних за допомогою сервісу Dataprep by Trifacta, запуску конвеєрів даних у Dataflow, створення кластерів і запуску завдань Apache Spark у Dataproc, а також виклику API машинного навчання, зокрема Cloud Natural Language API, Google Cloud Speech-to-Text API і Video Intelligence API.

Докладніше

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

Докладніше

Під час курсу ви зможете ознайомитися з продуктами й сервісами Google Cloud для роботи з масивами даних і машинним навчанням, які підтримують життєвий цикл роботи з даними для тренування моделей штучного інтелекту. У курсі розглядаються процеси, проблеми й переваги створення конвеєру масиву даних і моделей машинного навчання з Vertex AI у Google Cloud.

Докладніше