参加 ログイン

Pratihar Debdas

メンバー加入日: 2022

ダイヤモンド リーグ

15773 ポイント
Deploy an Agent with Agent Development Kit (ADK) Earned 10月 29, 2025 EDT
Edit images with Imagen Earned 10月 23, 2025 EDT
Generate and Edit Media with Imagen, Gemini, and Veo Earned 10月 22, 2025 EDT
Deploy and Evaluate Model Garden Models Earned 10月 16, 2025 EDT
Improve Performance by Fine-Tuning Foundation Models Earned 10月 14, 2025 EDT
Find, Explore and Deploy Model Garden Models Earned 10月 13, 2025 EDT
Deploy a RAG application with vector search in Firestore Earned 9月 19, 2025 EDT
Implement Hybrid Search Earned 9月 14, 2025 EDT
Implement RAG with Vertex AI Earned 9月 14, 2025 EDT
エンベディング作成、ベクトル検索、BigQuery での RAG Earned 8月 30, 2025 EDT
Extend Gemini with controlled generation and Tool use Earned 8月 30, 2025 EDT
Empower Gen AI apps with tool use Earned 8月 30, 2025 EDT
Engineer Effective Prompts for Generative Models Earned 8月 21, 2025 EDT
Explore Google's Gen AI Models Earned 8月 20, 2025 EDT
Text Prompt Engineering Techniques Earned 11月 3, 2023 EDT
Implementing Generative AI with Vertex AI Earned 10月 31, 2023 EDT
Search with AI Applications Earned 10月 12, 2023 EDT
Vertex AI Studio の概要 Earned 9月 24, 2023 EDT
画像キャプション モデルの作成 Earned 9月 24, 2023 EDT
Generative AI Explorer : Vertex AI Earned 8月 3, 2023 EDT
Generative AI Fundamentals Earned 7月 24, 2023 EDT
Transformer モデルと BERT モデル Earned 7月 21, 2023 EDT
Encoder-Decoder アーキテクチャ Earned 7月 9, 2023 EDT
責任ある AI: Google Cloud における AI に関する原則の適用 Earned 7月 9, 2023 EDT
アテンション機構 Earned 7月 5, 2023 EDT
画像生成の概要 Earned 6月 17, 2023 EDT
Generative AI Fundamentals - 日本語版 Earned 6月 17, 2023 EDT
責任ある AI の概要 Earned 6月 17, 2023 EDT
大規模言語モデルの概要 Earned 6月 6, 2023 EDT
生成 AI の概要 Earned 6月 5, 2023 EDT
Compute Engine での Cloud Load Balancing の実装 Earned 10月 11, 2022 EDT
Google Cloud におけるアプリ開発環境の設定 Earned 10月 11, 2022 EDT
Google Cloud におけるロギングとモニタリング Earned 10月 8, 2022 EDT
Google Kubernetes Engine を使ってみる Earned 9月 14, 2022 EDT
柔軟性のある Google Cloud インフラストラクチャ: スケーリングと自動化 Earned 9月 5, 2022 EDT
重要な Google Cloud インフラストラクチャ: 基礎 Earned 9月 3, 2022 EDT
重要な Google Cloud インフラストラクチャ: コアサービス Earned 8月 18, 2022 EDT
Google Cloud Operations を使用したスケーリング Earned 8月 3, 2022 EDT
Google Cloud によるインフラストラクチャとアプリケーションのモダナイゼーション Earned 8月 2, 2022 EDT
Google Cloud によるデジタル トランスフォーメーション Earned 8月 1, 2022 EDT
Google Cloud によるデータ トランスフォーメーションの探求 Earned 8月 1, 2022 EDT
Mitigating Security Vulnerabilities on Google Cloud Platform Earned 6月 13, 2022 EDT
Google Cloud でのクラウド セキュリティの基礎の実践 Earned 6月 9, 2022 EDT
安全な Google Cloud ネットワークの構築 Earned 6月 8, 2022 EDT
Security Best Practices in Google Cloud - 日本語版 Earned 6月 1, 2022 EDT
Managing Security in Google Cloud - 日本語版 Earned 5月 26, 2022 EDT
Networking in Google Cloud: Routing and Addressing - 日本語版 Earned 5月 20, 2022 EDT
Networking in Google Cloud: Fundamentals - 日本語版 Earned 5月 14, 2022 EDT
Google Cloud の基礎: コア インフラストラクチャ Earned 4月 28, 2022 EDT

In this challenge lab, you will demonstrate your ability to author agents using Agent Development Kit (ADK), deploy those agents to Agent Engine, and use them from a web app. Complete the challenge lab to earn a Google Cloud skill badge.

詳細

Complete the Edit images with Imagen skill badge to demonstrate your skills with Imagen's mask modes and editing modes to edit images according to certain prompts. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!

詳細

Generate engaging media with Google's foundation models for media. Create new images with Imagen, or edit your existing photos by adding details or outpainting to create a wider view. Replace backgrounds to put your products in new scenes. And learn the basics of generating videos with Veo!

詳細

In this skill bagde, you will demonstrate your ability to use and compare models available in the Vertex AI Model Garden. You'll deploy a model to a Vertex AI Endpoint, query other models via their API, and use Vertex AI's Gen AI evaluation service to measure the performance of multiple models.

詳細

Model tuning is an effective way to customize large models to your tasks. It's a key step to improve the model's quality and efficiency. Model tuning provides benefits such as higher quality results for your specific tasks and increased model robustness. You learn some of the tuning options available in Vertex AI and when to use them.

詳細

Model Garden is a model library that helps you discover, test, and deploy models from Google and Google partners. Learn how to explore the available models and select the right ones for your use case. And how to deploy and interact with Model Garden models through the Google Cloud console and APIs.

詳細

This lab tests your ability to develop a real-world Generative AI Q&A solution using a RAG framework. You will use Firestore as a vector database and deploy a Flask app as a user interface to query a food safety knowledge base.

詳細

Learn how to create Hybrid Search applications using Vertex AI Vertex Search to combine semantic searching with keyword search to return results based on both semantic meaning and keyword matching.

詳細

Learn how to build your own Retrieval-Augmented Generation (RAG) solutions for greater control and flexibility than out-of-the-box implementations. Create a custom RAG solution using Vertex AI APIs, vector stores, and the LangChain framework.

詳細

このコースでは、BigQuery で検索拡張生成(RAG)ソリューションを使用して AI ハルシネーションを軽減する方法を説明します。エンベディングの作成、ベクトル空間の検索、改善された回答の生成を含む RAG ワークフローについて解説し、これらの手順の背後にある概念的な理由と、BigQuery を使用した実践的な実装方法についても説明します。このコースを完了すると、BigQuery、Gemini などの生成 AI モデル、エンベディング モデルを使用して RAG パイプラインを構築し、独自の AI ハルシネーションのユースケースに対処できるようになります。

詳細

Complete the Extend Gemini with controlled generation and Tool use skill badge to demonstrate your proficiency in connecting models to external tools and APIs. This allows models to augment their knowledge, extend their capabilities and interact with external systems to take actions such as sending an email. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!"

詳細

An LLM-based application can process language in a way that resembles thought. But if you want to extend its capabilities to take actions by running other functions you have coded, you will need to use function calling. This can also be referred to as tool use. Additionally, you can give a model the ability to search Google or search a data store of documents to ground its responses. In other words, to base its answers on that information. In this course, you’ll explore these concepts.

詳細

Learn a variety of strategies and techniques to engineer effective prompts for generative models

詳細

Learn how to leverage Gemini multimodal capabilities to process and generate text, images, and audio and to integrate Gemini through APIs to perform tasks such as content creation and summarization.

詳細

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

詳細

This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.

詳細

(Previously named "Developing apps with Vertex AI Agent Builder: Search". Please note there maybe instances in this course where previous product names and titles are used) Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use AI Applications to integrate enterprise-grade generative AI search.

詳細

このコースでは、生成 AI モデルとのやりとり、ビジネス アイデアのプロトタイプ作成、本番環境へのリリースを行うツールである Vertex AI Studio をご紹介します。現実感のあるユースケースや、興味深い講義、ハンズオンラボを通して、プロンプトの作成から成果の実現に至るまでのライフサイクルを詳細に学び、Gemini マルチモーダル アプリケーションの開発、プロンプトの設計、モデルのチューニングに Vertex AI を活用する方法を学習します。Vertex AI Studio を利用することで、生成 AI をプロジェクトに最大限に活かせるようになることを目指します。

詳細

このコースでは、ディープ ラーニングを使用して画像キャプション生成モデルを作成する方法について学習します。エンコーダやデコーダなどの画像キャプション生成モデルのさまざまなコンポーネントと、モデルをトレーニングして評価する方法を学びます。このコースを修了すると、独自の画像キャプション生成モデルを作成し、それを使用して画像のキャプションを生成できるようになります。

詳細

This content is deprecated. Please see the latest version of the course, here.

詳細

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

詳細

このコースでは、Transformer アーキテクチャと Bidirectional Encoder Representations from Transformers(BERT)モデルの概要について説明します。セルフアテンション機構をはじめとする Transformer アーキテクチャの主要コンポーネントと、それが BERT モデルの構築にどのように使用されているのかについて学習します。さらに、テキスト分類、質問応答、自然言語推論など、BERT を適用可能なその他のタスクについても学習します。このコースの推定所要時間は約 45 分です。

詳細

このコースでは、機械翻訳、テキスト要約、質問応答などのシーケンス ツー シーケンス タスクに対応する、強力かつ広く使用されている ML アーキテクチャである Encoder-Decoder アーキテクチャの概要を説明します。Encoder-Decoder アーキテクチャの主要なコンポーネントと、これらのモデルをトレーニングして提供する方法について学習します。対応するラボのチュートリアルでは、詩を生成するための Encoder-Decoder アーキテクチャの簡単な実装を、TensorFlow で最初からコーディングします。

詳細

企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。

詳細

このコースでは、アテンション機構について学習します。アテンション機構とは、ニューラル ネットワークに入力配列の重要な部分を認識させるための高度な技術です。アテンションの仕組みと、アテンションを活用して機械翻訳、テキスト要約、質問応答といったさまざまな ML タスクのパフォーマンスを改善する方法を説明します。

詳細

このコースでは拡散モデルについて説明します。拡散モデルは ML モデル ファミリーの一つで、最近、画像生成分野での有望性が示されました。拡散モデルは物理学、特に熱力学からインスピレーションを得ています。ここ数年、拡散モデルは研究と産業界の両方で広まりました。拡散モデルは、Google Cloud の最先端の画像生成モデルやツールの多くを支える技術です。このコースでは、拡散モデルの背景にある理論と、モデルを Vertex AI でトレーニングしてデプロイする方法について説明します。

詳細

「Introduction to Generative AI」、「Introduction to Large Language Models」、「Introduction to Responsible AI」の各コースを修了すると、スキルバッジを獲得できます。最終テストに合格することで、ジェネレーティブ AI の基礎概念を理解していることが証明されます。 スキルバッジは、Google Cloud のプロダクトとサービスに関する知識を認定するために Google Cloud が発行するデジタルバッジです。スキルバッジは、ソーシャル メディアの公開プロフィールを作成してそこに追加することで一般向けに共有できます。

詳細

この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。

詳細

このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。

詳細

この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。

詳細

「b>Compute Engine での Cloud Load Balancing の実装」入門コースを修了してスキルバッジを獲得すると、次のスキルを実証できます: Compute Engine における仮想マシンの作成とデプロイ、 ネットワーク ロードバランサとアプリケーション ロードバランサの構成。

詳細

「Google Cloud におけるアプリ開発環境の設定」コースを完了すると、スキルバッジを獲得できます。このコースでは、 Cloud Storage、Identity and Access Management、Cloud Functions、Pub/Sub のテクノロジーの基本機能を使用して、ストレージ中心のクラウド インフラストラクチャを構築し接続する方法を学びます。

詳細

このコースでは、Google Cloud のインフラストラクチャとアプリケーションのパフォーマンスをモニタリングして改善するための手法を学びます。 プレゼンテーション、デモ、ハンズオンラボ、実際の事例紹介を組み合わせて活用することにより、フルスタック モニタリング、リアルタイムでのログ管理と分析、本番環境でのコードのデバッグ、アプリケーション パフォーマンスのボトルネックのトレース、CPU とメモリ使用量のプロファイリングに関する経験を積むことができます。

詳細

「Google Kubernetes Engine を使ってみる」コースへようこそ。Kubernetes にご興味をお持ちいただきありがとうございます。Kubernetes は、アプリケーションとハードウェア インフラストラクチャとの間にあるソフトウェア レイヤです。Google Kubernetes Engine は、Google Cloud 上のマネージド サービスとしての Kubernetes を提供します。 このコースでは、Google Kubernetes Engine(一般に GKE と呼ばれています)の基礎と、Google Cloud でアプリケーションをコンテナ化して実行する方法を学びます。このコースでは、まず Google Cloud の基本事項を確認します。続けて、コンテナ、Kubernetes、Kubernetes アーキテクチャ、Kubernetes オペレーションの概要について学びます。

詳細

このオンデマンド速習コースでは、Google Cloud が提供する包括的で柔軟なインフラストラクチャとプラットフォーム サービスについて紹介します。動画講義、デモ、ハンズオンラボを通してさまざまなソリューションの要素について学び、実際にデプロイしてみます。これにはセキュリティを維持しながらネットワークを相互接続する方法や、ロード バランシング、自動スケーリング、インフラストラクチャの自動化、マネージド サービスも含まれます。

詳細

このオンデマンド速習コースでは、Google Cloud で提供される包括的かつ柔軟なインフラストラクチャとプラットフォームのサービスについて、Compute Engine を中心に紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してさまざまなソリューションの各要素について学習し、実際のデプロイを演習します。これらの要素には、ネットワークや仮想マシン、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。コンソールと Cloud Shell を使用して Google Cloud を運用する方法についても学習します。また、クラウド アーキテクトの役割、インフラストラクチャ設計の方法、Virtual Private Cloud(VPC)を使用した仮想ネットワークの構成、プロジェクト、ネットワーク、サブネットワーク、IP アドレス、ルート、ファイアウォール ルールについても学習します。

詳細

このオンデマンド速習コースでは、Google Cloud で提供される包括的かつ柔軟なインフラストラクチャとプラットフォームのサービスについて、Compute Engine を中心に紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してソリューションの各要素について学習し、演習を行います。これらの要素には、ネットワーク、システム、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。また、実践的なソリューションの実装も取り上げ、顧客指定の暗号鍵、セキュリティとアクセス管理、割り当てと課金、リソース モニタリングなどについても学習します。

詳細

あらゆる規模の組織が、事業運営の変革にクラウドの能力と柔軟性を活用しているなかで、クラウド リソースを効果的に管理、スケーリングすることが複雑なタスクになる可能性もあります。 ここでは、Google Cloud Operations を使用したスケーリングを通して、クラウドにおける最新の運用、信頼性、レジリエンスに関する基本的概念と、Google Cloud がこういった取り組みをどのように支援できるのかについて理解を深めます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

多くの従来型企業では、既存のシステムやアプリケーションで昨今の顧客の期待に応え続けることが難しくなっています。この場合、経営者は、老朽化した IT システムの保守を続けるのか、新たな製品やサービスに投資をするのか、選択を迫られることになります。「Google Cloud によるインフラストラクチャとアプリケーションのモダナイゼーション」ではそうした課題を明らかにするとともに、そうした課題をクラウド テクノロジーによって乗り越えるためのソリューションについて学びます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

クラウド テクノロジーとデジタル トランスフォーメーションに大きな期待が寄せられていますが、疑問点も多く残っています。 例: クラウド テクノロジーとは何か?デジタル トランスフォーメーションとは何を意味しているか?クラウド テクノロジーが組織にどう役立つのか?どこから着手するのか? このような疑問をお持ちなら、このコースはぴったりです。このコースでは、デジタル トランスフォーメーションにおいて多くの企業が直面する機会と課題のタイプについてご説明します。このデジタル トランスフォーメーションの入門コースなら、クラウド テクノロジーに関する知識を深めて自分の業務に活用するとともに、今後のビジネスの成長にも役立てていただけます。このコースは クラウド デジタル リーダー 学習プログラムの一部です。

詳細

クラウド テクノロジーは組織に大きな価値をもたらします。クラウド テクノロジーの力をデータと組み合わせることで、その価値はさらに大きなものとなり、新しいカスタマー エクスペリエンスを提供できる可能性があります。「Google Cloud によるデータ トランスフォーメーションの探求」では、データが組織にもたらす価値と、Google Cloud でデータを有用かつアクセス可能なものにする方法を学習します。このコースは「クラウド デジタル リーダー」学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

This course gives participants broad study of security controls and techniques on Google Cloud Platform. Through recorded lectures, demonstrations, and hands-on labs, participants explore and deploy the components of a secure GCP solution, including Cloud Identity, the GCP Resource Manager, Cloud IAM, Google Virtual Private Cloud firewalls, Google Cloud Load balancing, Cloud CDN, Cloud Storage access control technologies, Stackdriver, Security Keys, Customer-Supplied Encryption Keys, the Google Data Loss Prevention API, and Cloud Armor.

詳細

Google Cloud でのクラウド セキュリティの基礎の実践 スキルバッジを獲得できる中級コースを修了すると、 Identity and Access Management(IAM)でのロールの作成と割り当て、 サービス アカウントの作成と管理、Virtual Private Cloud(VPC)ネットワーク全体でのプライベート接続の有効化、 Identity-Aware Proxy を使用したアプリケーション アクセスの制限、Cloud Key Management Service(KMS)を使用した鍵と暗号化されたデータの管理、 限定公開 Kubernetes クラスタの作成に関するスキルを実証できます。

詳細

安全な Google Cloud ネットワークの構築コースを修了してスキルバッジを獲得しましょう。このコースでは、Google Cloud でアプリケーションを ビルド、スケール、保護するための複数のネットワーク関連リソースについて学習します。

詳細

この自習式トレーニング コースでは、Google Cloud でのセキュリティの管理と手法全般について学習します。録画された講義、デモ、ハンズオンラボを通して、Cloud Storage アクセス制御テクノロジー、セキュリティ キー、顧客指定の暗号鍵、API アクセス制御、スコーピング、Shielded VM、暗号化、署名付き URL など、安全な Google Cloud ソリューションを構築するためのコンポーネントについて学習し、演習を行います。また、Kubernetes 環境の保護についても説明します。

詳細

この自習式トレーニング コースでは、Google Cloud でのセキュリティの管理と手法全般について学習します。録画された講義、デモ、ハンズオンラボを通して、Cloud Identity、Resource Manager、Cloud IAM、Virtual Private Cloud ファイアウォール、Cloud Load Balancing、Cloud ピアリング、Cloud Interconnect、VPC Service Controls など、安全な Google Cloud ソリューションのコンポーネントについて学び、演習を行います。 これは「Security in Google Cloud」シリーズの最初のコースです。このコースを修了したら、「Security Best Practices in Google Cloud」コースを受講してください。

詳細

「Networking in Google Cloud」シリーズの 2 番目のコース「Routing and Addressing」へようこそ。 このコースでは、Google Cloud のネットワーク機能に関連するルーティングとアドレス指定の中核となるコンセプトについて説明します。 モジュール 1 では、Google Cloud でのネットワーク ルーティングとアドレス指定について学習し、IPv4 のルーティング、お客様所有 IP アドレスの使用、Cloud DNS の設定などの主要な構成要素を取り上げることで、基礎知識を身に付けます。モジュール 2 では、プライベート接続のオプションに話題を移し、内部 IP アドレスを使用して Google やその他のサービスにプライベート アクセスするユースケースや手法について説明します。 このコースを修了すると、Google Cloud 内のネットワーク トラフィックを効果的にルーティングおよびアドレス指定する方法をしっかりと把握できるようになります。

詳細

Networking in Google Cloud 日本語版は、6 部構成のコースシリーズです。6 部構成のコースシリーズの最初のコース「Networking in Google Cloud: Fundamentals」へようこそ。  このコースでは、ネットワーキングの基礎、Virtual Private Cloud(VPC)、VPC ネットワークの共有など、ネットワーキングの主なコンセプトに関する包括的な概要を説明します。また、ネットワークのロギング手法とモニタリング手法についても説明します。 

詳細

Google Cloud の基礎: コア インストラクチャ では、Google Cloud に関する重要なコンセプトと用語について説明します。このコースでは動画とハンズオンラボを通じて学習を進めていきます。Google Cloud の多数のコンピューティング サービスとストレージ サービス、そしてリソースとポリシーを管理するための重要なツールについて比較しながら説明します。

詳細