가입 로그인

Stefano Lazzaretti

회원 가입일: 2022

Serverless Data Processing with Dataflow: Foundations Earned 5월 21, 2024 EDT
Google Cloud에서 일괄 데이터 파이프라인 빌드하기 Earned 4월 3, 2024 EDT
Google Cloud에서 데이터 레이크와 데이터 웨어하우스 빌드하기 Earned 3월 26, 2024 EDT
Developing Data Models with LookML Earned 5월 31, 2023 EDT
Exploring and Preparing your Data with BigQuery Earned 5월 24, 2023 EDT
Google Cloud Big Data and Machine Learning Fundamentals - 한국어 Earned 5월 23, 2023 EDT
Analyzing and Visualizing Data in Looker Earned 10월 24, 2022 EDT

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

자세히 알아보기

데이터 파이프라인은 일반적으로 추출-로드(EL), 추출-로드-변환(ELT) 또는 추출-변환-로드(ETL) 패러다임 중 하나에 속합니다. 이 과정에서는 일괄 데이터에 사용해야 할 패러다임과 사용 시기에 대해 설명합니다. 또한 BigQuery, Dataproc에서의 Spark 실행, Cloud Data Fusion의 파이프라인 그래프, Dataflow를 사용한 서버리스 데이터 처리 등 데이터 변환을 위한 Google Cloud의 여러 가지 기술을 다룹니다. Google Cloud에서 Qwiklabs를 사용해 데이터 파이프라인 구성요소를 빌드하는 실무형 실습도 진행합니다.

자세히 알아보기

데이터 레이크와 데이터 웨어하우스를 사용하는 기존 접근방식은 효과적일 수 있지만, 특히 대규모 엔터프라이즈 환경에서는 단점이 있습니다. 이 과정에서는 데이터 레이크하우스의 개념과 데이터 레이크하우스를 만드는 데 사용되는 Google Cloud 제품을 소개합니다. 레이크하우스 아키텍처는 개방형 표준 데이터 소스를 사용하며 데이터 레이크와 데이터 웨어하우스의 장점을 결합하여 많은 단점을 해결합니다.

자세히 알아보기

This course empowers you to develop scalable, performant LookML (Looker Modeling Language) models that provide your business users with the standardized, ready-to-use data that they need to answer their questions. Upon completing this course, you will be able to start building and maintaining LookML models to curate and manage data in your organization’s Looker instance.

자세히 알아보기

In this course, we see what the common challenges faced by data analysts are and how to solve them with the big data tools on Google Cloud. You’ll pick up some SQL along the way and become very familiar with using BigQuery and Dataprep to analyze and transform your datasets. This is the first course of the From Data to Insights with Google Cloud series. After completing this course, enroll in the Creating New BigQuery Datasets and Visualizing Insights course.

자세히 알아보기

이 과정에서는 데이터-AI 수명 주기를 지원하는 Google Cloud 빅데이터 및 머신러닝 제품과 서비스를 소개합니다. Google Cloud에서 Vertex AI를 사용하여 빅데이터 파이프라인 및 머신러닝 모델을 빌드하는 프로세스, 문제점 및 이점을 살펴봅니다.

자세히 알아보기

In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.

자세히 알아보기