Inscreva-se Fazer login

Alejandro Molina

Participante desde 2020

Liga Diamante

23135 pontos
Processamento de dados sem servidor com o Dataflow: fundamentos Earned Jul 30, 2024 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud - Português Brasileiro Earned Jul 30, 2024 EDT
Como criar sistemas de análise de streaming resilientes no Google Cloud Earned Jul 29, 2024 EDT
Como criar pipelines de dados em lote no Google Cloud Earned Jul 26, 2024 EDT
Como modernizar data lakes e data warehouses com o Google Cloud Earned Jul 4, 2024 EDT
Building Complex End to End Self-Service Experiences in Dialogflow CX Earned Jun 7, 2024 EDT
Conversational Agents Quality Assurance and Deployment Lifecycle Earned Jun 5, 2024 EDT
Stateful Flows Earned Jun 3, 2024 EDT
Building Complex Self-Service Experiences in Conversational Agents Earned Jun 3, 2024 EDT
Conversation Design Fundamentals Earned Jun 3, 2024 EDT
Advanced Webhook Concepts Earned Jun 2, 2024 EDT
Webhook fundamentals Earned Jun 2, 2024 EDT
Customer Engagement Suite with Google AI Architecture Earned Jun 1, 2024 EDT
Conversational AI Voice and Chat Integrations Earned Jun 1, 2024 EDT
Intro to CCAI and CCAI Engagement Framework Earned May 31, 2024 EDT
Preparação para sua jornada da certificação Professional Data Engineer Earned Dec 20, 2023 EST
Contact Center as a Service Implementation Earned Dec 14, 2023 EST
Google Cloud Big Data and Machine Learning Fundamentals - Português Brasileiro Earned Jun 14, 2023 EDT
Google Cloud Essentials Earned Sep 29, 2020 EDT
[DEPRECATED] Data Engineering Earned Jul 24, 2020 EDT

Este é o primeiro de uma série de três cursos sobre processamento de dados sem servidor com o Dataflow. Nele, vamos relembrar o que é o Apache Beam e qual é a relação entre ele e o Dataflow. Depois, falaremos sobre a visão do Apache Beam e os benefícios do framework de portabilidade desse modelo de programação. Com esse processo, o desenvolvedor pode usar a linguagem de programação favorita com o back-end de execução que quiser. Em seguida, mostraremos como o Dataflow permite a separação entre a computação e o armazenamento para economizar dinheiro. Além disso, você vai aprender como as ferramentas de identidade, acesso e gerenciamento interagem com os pipelines do Dataflow. Por fim, vamos ver como implementar o modelo de segurança ideal para seu caso de uso no Dataflow.

Saiba mais

A incorporação de machine learning em pipelines de dados aumenta a capacidade de extrair insights dessas informações. Neste curso, mostramos as várias formas de incluir essa tecnologia em pipelines de dados do Google Cloud. Para casos de pouca ou nenhuma personalização, vamos falar sobre o AutoML. Para usar recursos de machine learning mais personalizados, vamos apresentar os Notebooks e o machine learning do BigQuery (BigQuery ML). No curso, você também vai aprender sobre a produção de soluções de machine learning usando a Vertex AI.

Saiba mais

O processamento de dados de streaming é cada vez mais usado pelas empresas para gerar métricas sobre as operações comerciais em tempo real. Neste curso, você vai aprender a criar pipelines de dados de streaming no Google Cloud. O Pub/Sub é apresentado como a ferramenta para gerenciar dados de streaming de entrada. No curso, também abordamos a aplicação de agregações e transformações a dados de streaming usando o Dataflow, além de formas de armazenar registros processados no BigQuery ou no Bigtable para análise. Os participantes vão ganhar experiência prática na criação de componentes de pipelines de dados de streaming no Google Cloud usando o Qwiklabs.

Saiba mais

Os pipelines de dados geralmente se encaixam em um desses três paradigmas: extração e carregamento (EL), extração, carregamento e transformação (ELT) ou extração, transformação e carregamento (ETL). Este curso descreve qual paradigma deve ser usado em determinadas situações e quando isso ocorre com dados em lote. Além disso, vamos falar sobre várias tecnologias no Google Cloud para transformação de dados, incluindo o BigQuery, a execução do Spark no Dataproc, gráficos de pipeline no Cloud Data Fusion e processamento de dados sem servidor com o Dataflow. Os participantes vão ganhar experiência prática na criação de componentes de pipelines de dados no Google Cloud usando o Qwiklabs.

Saiba mais

Os dois principais componentes de um pipeline de dados são data lakes e warehouses. Neste curso, destacamos os casos de uso para cada tipo de armazenamento e as soluções de data lake e warehouse disponíveis no Google Cloud de forma detalhada e técnica. Além disso, também descrevemos o papel de um engenheiro de dados, os benefícios de um pipeline de dados funcional para operações comerciais e analisamos por que a engenharia de dados deve ser feita em um ambiente de nuvem. Este é o primeiro curso da série "Engenharia de dados no Google Cloud". Após a conclusão, recomendamos que você comece o curso "Como criar pipelines de dados em lote no Google Cloud".

Saiba mais

This course will equip you with the tools to develop complex conversational experiences in Dialogflow CX capable of identifying the user intent and routing it to the right self service flow.

Saiba mais

This course explores the quality assurance best practices and the tools available in Conversational Agents to ensure production grade quality during Conversational Agent development, as well as the key tenets for the creation of a robust end to end deployment lifecycle. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.

Saiba mais

Discover flows in Conversational Agents and learn how to build deterministic chat and voice experiences with language models. Explore key concepts like drivers, intents, and entities, and how to use them to create conversational agents.

Saiba mais

This course will equip you with the tools to develop complex conversational experiences in Conversational Agents capable of identifying the user intent and routing it to the right self service flow. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.

Saiba mais

This course explores the foundational principles of conversation design to craft engaging and effective experiences that emulate human-like experiences specific to the Chat channel. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.

Saiba mais

This course explores advanced technical considerations to optimize Webhook connectivity for comprehensive, end-to-end, Conversational Agent self-service experiences. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.

Saiba mais

In this course, you will learn the important role that different types of webhooks play in Conversational Agents development, and how to effectively integrate them into your routine configuration of a Conversational Agent. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.

Saiba mais

In this course you will learn the key architectural considerations that need to be taken into account when designing for the implementation of Conversational AI solutions. Please note Dialogflow CX was recently renamed to Conversational Agents and CCAI Insights was renamed to Conversational Insights.

Saiba mais

Learn about building conversational AI voice and chat integrations, including how telephony systems can connect with Google to enable phone-based interactions within the Conversational AI ecosystem. Explore key topics such as the differences between chat and voice conversations, the writing process for creating conversation scripts, and the beginning of the interrogative series and closing sequence.

Saiba mais

This is a introductory course to all solutions in the Contact Centre AI (CCAI) portfolio and the Generative AI features that are poised to transform them. The course also explores the CCAI go to market and engagement model, the business case around CCAI, as well as the use cases and user personas addressed by the solution.

Saiba mais

Este curso ajuda estudantes a criar um plano de estudo para o exame de certificação PDE (Professional Data Engineer). É possível conferir a amplitude e o escopo dos domínios abordados no exame. Os estudantes também podem acompanhar os preparativos para o exame e criar planos de estudos individuais.

Saiba mais

An AI-driven Contact Center as a Service (CCaaS) solution that is built natively on Google Cloud. The Implementation course provides Partners with essential training about the delivery of key features and functionality. The course explores how to leverage your key understanding of the product into successful customer implementation engagements with tips, best practices, guides, and more. Note: This product was previously called Contact Center AI (CCAI) Platform you may see references to that name still in the course, however the course is technically correct.

Saiba mais

Este curso apresenta os produtos e serviços de Big Data e machine learning do Google Cloud que auxiliam no ciclo de vida de dados para IA. Ele explica os processos, os desafios e os benefícios de criar um pipeline de Big Data e modelos de machine learning com a Vertex AI no Google Cloud.

Saiba mais

Nesta Quest de nível introdutório, você terá acesso a treinamentos práticos com os principais serviços e ferramentas do Google Cloud Platform. A Quest "GCP Essentials" é a primeira recomendação para quem está aprendendo a usar o Google Cloud. Com ela, quem tem pouco ou nenhum conhecimento sobre nuvem ganha experiência prática para aplicar no primeiro projeto do GCP. Esta Quest proporciona um contato inicial com os recursos fundamentais da plataforma, como o registro de comandos do Cloud Shell, a implementação da sua primeira máquina virtual, a execução de aplicativos no Kubernetes Engine e o balanceamento de carga. Assista também os vídeos rápidos que explicam os conceitos principais de cada laboratório.

Saiba mais

This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.

Saiba mais