Unirse Acceder

Camila Breide

Miembro desde 2023

Liga de Bronce

3800 puntos
Google Cloud Essentials Earned dic 20, 2023 EST
Smart Analytics, Machine Learning, and AI on Google Cloud - Español Earned jun 19, 2023 EDT
Prepara datos para las APIs de AA en Google Cloud Earned may 3, 2023 EDT
Ingeniería de datos para crear modelos predictivos con BigQuery ML Earned may 3, 2023 EDT
Implementa Cloud Load Balancing para Compute Engine Earned may 3, 2023 EDT
Crea un almacén de datos con BigQuery Earned may 3, 2023 EDT
Procesamiento de datos sin servidores con Dataflow: Fundamentos Earned may 3, 2023 EDT
Creación de flujos de procesamiento de datos por lotes en Google Cloud Earned abr 27, 2023 EDT
Crea data lakes y almacenes de datos en Google Cloud Earned mar 24, 2023 EDT
Google Cloud Big Data and Machine Learning Fundamentals - Español Earned mar 2, 2023 EST

En esta Quest de nivel básico, adquirirá experiencia práctica en las herramientas y los servicios fundamentales de Google Cloud Platform. GCP Essentials es la primera Quest recomendada para el estudiante de Google Cloud. Ingresará con poco o ningún conocimiento previo sobre la nube, y saldrá con experiencia práctica que podrá aplicar a su primer proyecto de GCP. Desde la escritura de comandos de Cloud Shell y la implementación de su primera máquina virtual hasta la ejecución de aplicaciones en Kubernetes Engine o mediante el balanceo de cargas, GCP Essentials es una excelente introducción a las funciones básicas de la plataforma. En los videos de 1 minuto, se le explicarán los conceptos clave de cada lab.

Más información

La incorporación del aprendizaje automático en las canalizaciones de datos aumenta la capacidad para extraer estadísticas de los datos. En este curso, veremos formas de incluir el aprendizaje automático en las canalizaciones de datos en Google Cloud. Para una personalización escasa o nula, en el curso se aborda AutoML. Para obtener más capacidades de aprendizaje automático a medida, el curso presenta Notebooks y BigQuery Machine Learning (BigQuery ML). Además, en este curso se aborda cómo llevar a producción soluciones de aprendizaje automático con Vertex AI.

Más información

Completa la insignia de habilidad introductoria Prepara datos para las APIs de AA en Google Cloud y demuestra tus habilidades para realizar las siguientes actividades: limpiar datos con Dataprep de Trifacta, ejecutar canalizaciones de datos en Dataflow, crear clústeres y ejecutar trabajos de Apache Spark en Dataproc y llamar a APIs de AA, como la API de Cloud Natural Language, la API de Google Cloud Speech-to-Text y la API de Video Intelligence.

Más información

Obtén la insignia de habilidad intermedia Ingeniería de datos para crear modelos predictivos con BigQuery ML y demuestra tus capacidades para crear canalizaciones de transformación de datos en BigQuery con Dataprep de Trifacta; usar Cloud Storage, Dataflow y BigQuery para crear flujos de trabajo de extracción, transformación y carga (ETL), y crear modelos de aprendizaje automático con BigQuery ML.

Más información

Completa la insignia de habilidad introductoria Implementa Cloud Load Balancing para Compute Engine y demuestra tus habilidades para realizar las siguientes actividades: crear y, luego, implementar máquinas virtuales en Compute Engine, y configurar balanceadores de cargas de red y de aplicaciones.

Más información

Completa la insignia de habilidad intermedia Crea un almacén de datos con BigQuery para demostrar tus habilidades para realizar las siguientes actividades: unir datos para crear tablas nuevas, solucionar problemas de uniones, agregar datos a uniones, crear tablas particionadas por fecha, y trabajar con JSON, arrays y structs en BigQuery.

Más información

Este curso corresponde a la 1ª parte de una serie de 3 cursos llamada Procesamiento de datos sin servidores con Dataflow. Para comenzar, en el primer curso haremos un repaso de qué es Apache Beam y cómo se relaciona con Dataflow. Luego, hablaremos sobre la visión de Apache Beam y los beneficios que ofrece su framework de portabilidad. Dicho framework hace posible que un desarrollador pueda usar su lenguaje de programación favorito con su backend de ejecución preferido. Después, le mostraremos cómo Dataflow le permite separar el procesamiento y el almacenamiento y, a la vez, ahorrar dinero. También le explicaremos cómo las herramientas de identidad, acceso y administración interactúan con sus canalizaciones de Dataflow. Por último, veremos cómo implementar el modelo de seguridad adecuado en Dataflow según su caso de uso.

Más información

Las canalizaciones de datos suelen realizarse según uno de los paradigmas extracción y carga (EL); extracción, carga y transformación (ELT), o extracción, transformación y carga (ETL). En este curso, abordaremos qué paradigma se debe utilizar para los datos por lotes y cuándo corresponde usarlo. Además, veremos varias tecnologías de Google Cloud para la transformación de datos, incluidos BigQuery, la ejecución de Spark en Dataproc, grafos de canalización en Cloud Data Fusion y procesamiento de datos sin servidores en Dataflow. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos en Google Cloud con Qwiklabs.

Más información

Si bien los enfoques tradicionales de usar data lakes y almacenes de datos pueden ser eficaces, tienen deficiencias, en particular en entornos empresariales grandes. En este curso, se presenta el concepto del data lakehouse y los productos de Google Cloud que se usan para crear uno. Una arquitectura de lakehouse usa fuentes de datos de estándares abiertos y combina las mejores funciones de los data lakes y los almacenes de datos, lo que aborda muchas de sus deficiencias.

Más información

En este curso, aprenderás sobre los productos y servicios de macrodatos y aprendizaje automático de Google Cloud involucrados en el ciclo de vida de datos a IA. También explorarás los procesos, los desafíos y los beneficios de crear una canalización de macrodatos y modelos de aprendizaje automático con Vertex AI en Google Cloud.

Más información