가입 로그인

Srinivas Bheemisetty

회원 가입일: 2022

다이아몬드 리그

9880포인트
Serverless Data Processing with Dataflow: Foundations Earned 7월 13, 2025 EDT
Build and Deploy a Generative AI solution using a RAG framework Earned 12월 10, 2024 EST
책임감 있는 AI: Google Cloud를 통한 AI 원칙 적용하기 Earned 11월 11, 2024 EST
Text Prompt Engineering Techniques Earned 8월 28, 2024 EDT
Integrate Vertex AI Search and Conversation into Voice and Chat Apps Earned 8월 5, 2024 EDT
Generative AI Fundamentals Earned 8월 14, 2023 EDT
Transformer 모델 및 BERT 모델 Earned 8월 14, 2023 EDT
인코더-디코더 아키텍처 Earned 8월 11, 2023 EDT
어텐션 메커니즘 Earned 8월 6, 2023 EDT
이미지 생성 소개 Earned 8월 6, 2023 EDT
책임감 있는 AI 소개 Earned 8월 6, 2023 EDT
대규모 언어 모델 소개 Earned 8월 6, 2023 EDT
생성형 AI 소개 Earned 8월 6, 2023 EDT
BigQuery ML을 사용한 예측 모델링을 위한 데이터 엔지니어링 Earned 4월 5, 2023 EDT
Google Cloud 기반 복원력이 우수한 스트리밍 분석 시스템 구축하기 Earned 3월 31, 2023 EDT
Google Cloud에서 일괄 데이터 파이프라인 빌드하기 Earned 3월 31, 2023 EDT
Google Cloud Big Data and Machine Learning Fundamentals - 한국어 Earned 3월 28, 2023 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud - 한국어 Earned 3월 24, 2023 EDT
Google Cloud로 데이터 레이크 및 데이터 웨어하우스 현대화하기 Earned 3월 21, 2023 EDT
[DEPRECATED] Data Engineering Earned 3월 16, 2023 EDT

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

자세히 알아보기

Demonstrate your ability to implement updated prompt engineering techniques and utilize several of Gemini's key capacilities including multimodal understanding and function calling. Then integrate generative AI into a RAG application deployed to Cloud Run. This course contains labs that are to be used as a test environment. They are deployed to test your understanding as a learner with a limited scope. These technologies can be used with fewer limitations in a real world environment.

자세히 알아보기

기업에서 인공지능과 머신러닝의 사용이 계속 증가함에 따라 책임감 있는 빌드의 중요성도 커지고 있습니다. 대부분의 기업은 책임감 있는 AI를 실천하기가 말처럼 쉽지 않습니다. 조직에서 책임감 있는 AI를 운영하는 방법에 관심이 있다면 이 과정이 도움이 될 것입니다. 이 과정에서 책임감 있는 AI를 위해 현재 Google Cloud가 기울이고 있는 노력, 권장사항, Google Cloud가 얻은 교훈을 알아보면 책임감 있는 AI 접근 방식을 구축하기 위한 프레임워크를 수립할 수 있을 것입니다.

자세히 알아보기

Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.

자세히 알아보기

This course on Integrate Vertex AI Search and Conversation into Voice and Chat Apps is composed of a set of labs to give you a hands on experience to interacting with new Generative AI technologies. You will learn how to create end-to-end search and conversational experiences by following examples. These technologies complement predefined intent-based chat experiences created in Dialogflow with LLM-based, generative answers that can be based on your own data. Also, they allow you to porvide enterprise-grade search experiences for internal and external websites to search documents, structure data and public websites.

자세히 알아보기

Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.

자세히 알아보기

이 과정은 Transformer 아키텍처와 BERT(Bidirectional Encoder Representations from Transformers) 모델을 소개합니다. 셀프 어텐션 메커니즘 같은 Transformer 아키텍처의 주요 구성요소와 이 아키텍처가 BERT 모델 빌드에 사용되는 방식에 관해 알아봅니다. 또한 텍스트 분류, 질문 답변, 자연어 추론과 같이 BERT를 활용할 수 있는 다양한 작업에 대해서도 알아봅니다. 이 과정은 완료하는 데 대략 45분이 소요됩니다.

자세히 알아보기

이 과정은 기계 번역, 텍스트 요약, 질의 응답과 같은 시퀀스-투-시퀀스(Seq2Seq) 작업에 널리 사용되는 강력한 머신러닝 아키텍처인 인코더-디코더 아키텍처에 대한 개요를 제공합니다. 인코더-디코더 아키텍처의 기본 구성요소와 이러한 모델의 학습 및 서빙 방법에 대해 알아봅니다. 해당하는 실습 둘러보기에서는 TensorFlow에서 시를 짓는 인코더-디코더 아키텍처를 처음부터 간단하게 구현하는 코딩을 해봅니다.

자세히 알아보기

이 과정에서는 신경망이 입력 시퀀스의 특정 부분에 집중할 수 있도록 하는 강력한 기술인 주목 메커니즘을 소개합니다. 주목 메커니즘의 작동 방식과 이 메커니즘을 다양한 머신러닝 작업(기계 번역, 텍스트 요약, 질문 답변 등)의 성능을 개선하는 데 활용하는 방법을 알아봅니다.

자세히 알아보기

이 과정에서는 최근 이미지 생성 분야에서 가능성을 보여준 머신러닝 모델 제품군인 확산 모델을 소개합니다. 확산 모델은 열역학을 비롯한 물리학에서 착안했습니다. 지난 몇 년 동안 확산 모델은 연구계와 업계 모두에서 주목을 받았습니다. 확산 모델은 Google Cloud의 다양한 최신 이미지 생성 모델과 도구를 뒷받침합니다. 이 과정에서는 확산 모델의 이론과 Vertex AI에서 이 모델을 학습시키고 배포하는 방법을 소개합니다.

자세히 알아보기

책임감 있는 AI란 무엇이고 이것이 왜 중요하며 Google에서는 어떻게 제품에 책임감 있는 AI를 구현하고 있는지 설명하는 입문용 마이크로 학습 과정입니다. Google의 7가지 AI 원칙도 소개합니다.

자세히 알아보기

이 과정은 입문용 마이크로 학습 과정으로, 대규모 언어 모델(LLM)이란 무엇이고, LLM을 활용할 수 있는 사용 사례로는 어떤 것이 있으며, 프롬프트 조정을 사용해 LLM 성능을 개선하는 방법은 무엇인지 알아봅니다. 또한 자체 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기

생성형 AI란 무엇이고 어떻게 사용하며 전통적인 머신러닝 방법과는 어떻게 다른지 설명하는 입문용 마이크로 학습 과정입니다. 직접 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기

중급 BigQuery ML을 사용한 예측 모델링을 위한 데이터 엔지니어링 기술 배지를 획득하여 Dataprep by Trifact로 데이터 변환 파이프라인을 BigQuery에 빌드, Cloud Storage, Dataflow, BigQuery를 사용한 ETL(추출, 변환, 로드) 워크플로 빌드, BigQuery ML을 사용하여 머신러닝 모델을 빌드하는 기술 역량을 입증할 수 있습니다.

자세히 알아보기

스트리밍을 통해 비즈니스 운영에 대한 실시간 측정항목을 얻을 수 있게 되면서 스트리밍 데이터 처리의 사용이 늘고 있습니다. 이 과정에서는 Google Cloud에서 스트리밍 데이터 파이프라인을 빌드하는 방법을 다룹니다. 수신되는 스트리밍 데이터 처리와 관련해 Pub/Sub를 설명합니다. 이 과정에서는 Dataflow를 사용해 집계 및 변환을 스트리밍 데이터에 적용하는 방법과 처리된 레코드를 분석을 위해 BigQuery 또는 Bigtable에 저장하는 방법에 대해서도 다룹니다. Google Cloud에서 Qwiklabs를 사용해 스트리밍 데이터 파이프라인 구성요소를 빌드하는 실습을 진행해 볼 수도 있습니다.

자세히 알아보기

데이터 파이프라인은 일반적으로 추출-로드(EL), 추출-로드-변환(ELT) 또는 추출-변환-로드(ETL) 패러다임 중 하나에 속합니다. 이 과정에서는 일괄 데이터에 사용해야 할 패러다임과 사용 시기에 대해 설명합니다. 또한 BigQuery, Dataproc에서의 Spark 실행, Cloud Data Fusion의 파이프라인 그래프, Dataflow를 사용한 서버리스 데이터 처리 등 데이터 변환을 위한 Google Cloud의 여러 가지 기술을 다룹니다. Google Cloud에서 Qwiklabs를 사용해 데이터 파이프라인 구성요소를 빌드하는 실무형 실습도 진행합니다.

자세히 알아보기

이 과정에서는 데이터-AI 수명 주기를 지원하는 Google Cloud 빅데이터 및 머신러닝 제품과 서비스를 소개합니다. Google Cloud에서 Vertex AI를 사용하여 빅데이터 파이프라인 및 머신러닝 모델을 빌드하는 프로세스, 문제점 및 이점을 살펴봅니다.

자세히 알아보기

머신러닝을 데이터 파이프라인에 통합하면 데이터에서 더 많은 인사이트를 도출할 수 있습니다. 이 과정에서는 머신러닝을 Google Cloud의 데이터 파이프라인에 포함하는 방법을 알아봅니다. 맞춤설정이 거의 또는 전혀 필요 없는 경우에 적합한 AutoML에 대해 알아보고 맞춤형 머신러닝 기능이 필요한 경우를 위해 Notebooks 및 BigQuery 머신러닝(BigQuery ML)도 소개합니다. Vertex AI를 사용해 머신러닝 솔루션을 프로덕션화하는 방법도 다루어 보겠습니다.

자세히 알아보기

데이터 파이프라인의 두 가지 주요 구성요소는 데이터 레이크와 웨어하우스입니다. 이 과정에서는 스토리지 유형별 사용 사례를 살펴보고 Google Cloud에서 사용 가능한 데이터 레이크 및 웨어하우스 솔루션을 기술적으로 자세히 설명합니다. 또한 데이터 엔지니어의 역할, 성공적인 데이터 파이프라인이 비즈니스 운영에 가져오는 이점, 클라우드 환경에서 데이터 엔지니어링을 수행해야 하는 이유도 알아봅니다. 'Google Cloud의 데이터 엔지니어링' 시리즈의 첫 번째 과정입니다. 이 과정을 완료한 후 'Google Cloud에서 일괄 데이터 파이프라인 빌드하기' 과정에 등록하세요.

자세히 알아보기

This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.

자세히 알아보기