Unirse Acceder

Julian David Angulo Abril

Miembro desde 2024

Liga de Oro

10980 puntos
Contact Center as a Service Implementation Earned may 22, 2025 EDT
Crea canalizaciones de datos de transmisión en Google Cloud Earned ago 23, 2024 EDT
Creación de flujos de procesamiento de datos por lotes en Google Cloud Earned ago 19, 2024 EDT
Crea data lakes y almacenes de datos en Google Cloud Earned jul 24, 2024 EDT
Preparación para el proceso de certificación Professional Data Engineer Earned jul 23, 2024 EDT

An AI-driven Contact Center as a Service (CCaaS) solution that is built natively on Google Cloud. The Implementation course provides Partners with essential training about the delivery of key features and functionality. The course explores how to leverage your key understanding of the product into successful customer implementation engagements with tips, best practices, guides, and more. Note: This product was previously called Contact Center AI (CCAI) Platform you may see references to that name still in the course, however the course is technically correct.

Más información

En este curso, adquirirás experiencia práctica para superar los desafíos del mundo real que se presentan cuando se crean canalizaciones de datos de transmisión. El enfoque principal es administrar datos continuos y no delimitados con los productos de Google Cloud.

Más información

Las canalizaciones de datos suelen realizarse según uno de los paradigmas extracción y carga (EL); extracción, carga y transformación (ELT), o extracción, transformación y carga (ETL). En este curso, abordaremos qué paradigma se debe utilizar para los datos por lotes y cuándo corresponde usarlo. Además, veremos varias tecnologías de Google Cloud para la transformación de datos, incluidos BigQuery, la ejecución de Spark en Dataproc, grafos de canalización en Cloud Data Fusion y procesamiento de datos sin servidores en Dataflow. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos en Google Cloud con Qwiklabs.

Más información

Si bien los enfoques tradicionales de usar data lakes y almacenes de datos pueden ser eficaces, tienen deficiencias, en particular en entornos empresariales grandes. En este curso, se presenta el concepto del data lakehouse y los productos de Google Cloud que se usan para crear uno. Una arquitectura de lakehouse usa fuentes de datos de estándares abiertos y combina las mejores funciones de los data lakes y los almacenes de datos, lo que aborda muchas de sus deficiencias.

Más información

Este curso ayuda a los participantes a crear un plan de estudio para el examen de certificación de PDE (Professional Data Engineer). Los alumnos conocerán la amplitud y el alcance de los dominios que se incluyen en el examen. Además, evaluarán su nivel de preparación para el examen y crearán un plan de estudio personal.

Más información