Kevin Tijerina
Mitglied seit 2023
Diamond League
133918 Punkte
Mitglied seit 2023
Complete the Extend Gemini Enterprise Assistant Capabilities skill badge to demonstrate your ability to extend Gemini Enterprise assistant's capabilities with actions, grounding with Google Search, and a conversational agent. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
Complete the Create media search and media recommendations applications with AI Applications skill badge to demonstrate your ability to create, configure, and access media search and recommendations applications using AI Applications. Please note that AI Applications was previously named Agent Builder, so you may encounter this older name within the lab content. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
Do you want to keep your users engaged by suggesting content they'll love? This course equips you with the skills to build a cutting-edge recommendations app using your own data with no prior machine learning knowledge. You learn to leverage AI Applications to build recommendation applications so that audiences can discover more personalized content, like what to watch or read next, with Google-quality results customized using optimization objectives.
NotebookLM is an AI-powered collaborator that helps you do your best thinking. After uploading your documents, NotebookLM becomes an instant expert in those sources so you can read, take notes, and collaborate with it to refine and organize your ideas. NotebookLM Pro gives you everything already included with NotebookLM, as well as higher utilization limits, access to premium features, and additional sharing options and analytics.
Complete the Configure AI Applications to optimize search results skill badge to demonstrate your proficiency in configuring search results from AI Applications. You will be tasked with implementing search serving controls to boost and bury results, filter entries from search results and display metadata in your search interface. Please note that AI Applications was previously named Agent Builder, so you may encounter this older name within the lab content. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
If you've worked with data, you know that some data is more reliable than other data. In this course, you'll learn a variety of techniques to present the most reliable or useful results to your users. Create serving controls to boost or bury search results. Rank search results to ensure that each query is answered by the most relevant data. If needed, tune your search engine. Learn to measure search results to ensure your search applications deliver the best possible results to each user. (Please note Gemini Enterprise was previously named Google Agentspace, there may be references to the previous product name in this course.)
Complete the Create and maintain Vertex AI Search data stores skill badge to demonstrate your proficiency in building various types of data stores used in Vertex AI Search applications. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
AI Applications provides built-in analytics for your Vertex AI Search and Gemini Enterprise apps. Learn what metrics are tracked and how to view them in this course. (Please note Gemini Enterprise was previously named Google Agentspace, there may be references to the previous product name in this course.)
Initial deployment of Vertex AI Search and Gemini Enterprise apps takes only a few clicks, but getting the configurations right can elevate a deployment from a basic off-the-shelf app to an excellent custom search or recommendations experience. In this course, you'll learn more about the many ways you can customize and improve search, recommendations, and Gemini Enterprise apps. (Please note Gemini Enterprise was previously named Google Agentspace, there may be references to the previous product name in this course.)
Complete the Build search and recommendations AI Applications skill badge to demonstrate your proficiency in deploying search and recommendation applications through AI Applications. Additionally, emphasis is placed on constructing a tailored Q&A system utilizing data stores. Please note that AI Applications was previously named Agent Builder, so you may encounter this older name within the lab content. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
Data stores represent a simple way to make content available to many types of generative AI applications, including search applications, recommendations engines, Gemini Enterprise apps, Agent Development Kit agents, and apps built with Google Gen AI or LangChain SDKs. Connect data from many sources include Cloud Storage, Google Drive, chat apps, mail apps, ticketing systems, third-party file storage providers, Salesforce, and many more.
This course introduces AI Applications. You will learn about the types of apps that you can create using AI Applications, the high-level steps that its data stores automate for you, and what advanced features can be enabled for Search apps. (Please note Gemini Enterprise was previously named Google Agentspace, there may be references to the previous product name in this course.)
Complete the Extend agent functionality with Webhooks, Tools, and Integrations skill badge to demonstrate your ability to let conversational agents take actions. You will create a flow that calls a webhook and a playbook with a tool and combine them into a hybrid agent. You'll also prepare custom payload for rich content experiences in the Conversational Messenger. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
This course explores the different products and capabilities of Customer Engagement Suite (CES) and Conversational agents. Additionally, it covers the foundational principles of conversation design to craft engaging and effective experiences that emulate human-like experiences specific to the Chat channel.
Complete the Leverage best practices for developing, operating, and securing production-grade Conversational Agents skill badge to demonstrate your ability to implement a variety of best practices around development, deployment, and security. These will include: Using versions and environments, backing up with Git integration, leveraging test cases and CI/CD testing, tracking conversations with conversation history and logging, redacting data, and securing acceess to agent and webhook endpoints. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have develope…
Connect Conversational Agents to external systems and APIs to expand what agents can do, designing an end-to-end system that is resilient, fault-tolerant and secure.
Complete the Improve customer and agent satisfaction with Agent Assist skill badge to demonstrate your proficiency in configuring basic conversational agents that can escalate actions to human agents, and configuring Agent Assist to help human agents with customer queries. You prove your knowledge in configuring Generators for summarization, classification and recommendation of tickets as well leverage tools such as Generative Knowledge Assist, to provide further context to human agents. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
This course will equip you with the tools to develop complex conversational experiences in Conversational Agents using best practices to create production-ready agents.
This course explores the fundamentals of the feedback loop process for Conversational Agent development and introduces the native capabilities within Conversational Agents that support it. You will also learn about advanced methods and tools to monitor the performance of your Conversational agent in Conversational Agents.
Complete the Analyze patterns in conversational data with Conversational Insights skill badge to demonstrate your proficiency in analysing customer conversations with Conversational Insights. After completing this challenge, you will be ready to deploy Conversation Insights to improve customer service performance, and create better customer experiences. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
Complete the Build basic Conversational Agents with Playbooks and Flows skill badge to demonstrate your proficiency in building virtual agents using traditional NLU and generative-based features. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!
In this course, you will learn the important role that different types of webhooks play in Conversational Agents development, and how to effectively integrate them into your routine configuration of a Conversational Agent. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.
Discover flows in Conversational Agents and learn how to build deterministic chat and voice experiences with language models. Explore key concepts like drivers, intents, and entities, and how to use them to create conversational agents.
This course explores the foundational principles of conversation design to craft engaging and effective experiences that emulate human-like experiences specific to the Chat channel. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.
This course explores the best practices, methods and tools to programmatically lead CCAI virtual agent delivery. It includes a high level overview of the end to end journey for building and deploying a virtual agent, as well as the core tenets to create a strong delivery culture. Additionally, this course covers the best practices for workflow management, defect tracking, release management and post-release support to ensure optimal virtual agent performance.
In this course, you will learn about advanced methods and tools to monitor the performance of your Conversational agent in Conversational Agents. Please note Dialogflow CX was recently renamed to Conversational Agents and this course is in the process of being updated to reflect the new product name for Dialogflow CX.
Explore the Generative AI features for Conversational Agents and how to incorporate them into stateful Flows. Discover the possibilities with Generators, Generative Fallback, and Data Stores, as well as best practices and security settings for using these features.
This course explores advanced technical considerations to optimize Webhook connectivity for comprehensive, end-to-end, Conversational Agent self-service experiences. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.
This course will equip you with the tools to develop complex conversational experiences in Conversational Agents capable of identifying the user intent and routing it to the right self service flow.
Explore Playbooks and their implementation of the ReAct pattern for building Conversational Agents. You will learn how to construct a Playbook, set up goals and instructions to build a chatbot in natural language, and learn to test and deploy your solution.
This course will equip you with the tools to develop complex conversational experiences in Conversational Agents capable of identifying the user intent and routing it to the right self service flow. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.
Learn about building conversational AI voice and chat integrations, including how telephony systems can connect with Google to enable phone-based interactions within the Conversational AI ecosystem. Explore key topics such as the differences between chat and voice conversations, the writing process for creating conversation scripts, and the beginning of the interrogative series and closing sequence.
Mit dem Skill-Logo Data Mesh mit Dataplex aufbauen weisen Sie die folgenden Kenntnisse nach: Aufbauen eines Data Mesh mit Dataplex für mehr Datensicherheit, Governance und Discovery in Google Cloud. Sie fördern und testen Ihre Fähigkeiten beim Tagging von Assets, Zuweisen von IAM-Rollen und Bewerten der Datenqualität in Dataplex.
In diesem Kurs wird gezeigt, wie Sie KI-/ML-Modelle für Aufgaben basierend auf generativer KI in BigQuery verwenden. Anhand eines praktischen Anwendungsfalls zum Customer-Relationship-Management lernen Sie den Workflow zur Lösung eines Geschäftsproblems mit Gemini-Modellen kennen. Zur besseren Nachvollziehbarkeit bietet der Kurs auch eine Schritt-für-Schritt-Anleitung für das Programmieren von Lösungen mithilfe von SQL-Abfragen und Python-Notebooks.
Dieser Kurs behandelt Gemini in BigQuery, eine Suite KI-gesteuerter Funktionen zur Aufbereitung von Daten für die Verwendung in künstlicher Intelligenz. Zu diesen Funktionen gehören explorative Datenanalyse und ‑aufbereitung, Codegenerierung und Fehlerbehebung sowie Workflow-Erkennung und ‑Visualisierung. Durch konzeptionelle Erläuterungen, einen praxisnahen Anwendungsfall und praktische Übungen können Datenexperten mit diesem Kurs ihre Produktivität steigern und die Entwicklungspipeline beschleunigen.
Mit dem Skill-Logo zum Kurs Daten für die Vorhersagemodellierung mit BigQuery ML vorbereiten weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Erstellen von Pipelines für die Datentransformation nach BigQuery mithilfe von Dataprep von Trifacta; Extrahieren, Transformieren und Laden (ETL) von Workflows mit Cloud Storage, Dataflow und BigQuery; und Erstellen von Machine-Learning-Modellen mithilfe von BigQuery ML.
Mit dem Skill-Logo zum Kurs Data Warehouse mit BigQuery erstellen weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Daten zusammenführen, um neue Tabellen zu erstellen, Probleme mit Joins lösen, Daten mit Unions anhängen, nach Daten partitionierte Tabellen erstellen und JSON, Arrays sowie Strukturen in BigQuery nutzen.
Mit dem Skill-Logo zum Kurs Daten für ML-APIs in Google Cloud vorbereiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bereinigen von Daten mit Dataprep von Trifacta, Ausführen von Datenpipelines in Dataflow, Erstellen von Clustern und Ausführen von Apache Spark-Jobs in Dataproc sowie Aufrufen von ML-APIs, einschließlich der Cloud Natural Language API, Cloud Speech-to-Text API und Video Intelligence API.
Mit dem Skill-Logo zum Kurs Cloud Load Balancing in der Compute Engine implementieren weisen Sie Kenntnisse in folgenden Bereichen nach: virtuelle Maschinen in der Compute Engine erstellen und bereitstellen und Netzwerk- und Application Load Balancer konfigurieren.
Agentspace, ein Unternehmenstool, mit dem Mitarbeiter bestimmte Informationen in Dokumentenspeichern, E‑Mails, Chats, Ticketsystemen und anderen Datenquellen über eine einzige Suchleiste finden können, vereint das Fachwissen von Google in den Bereichen Suche und KI. Der Agentspace-Assistent kann auch beim Brainstorming, der Recherche oder der Strukturierung von Dokumenten unterstützen und zum Beispiel Kollegen zu einem Kalendertermin einladen, um Wissensarbeit sowie die Zusammenarbeit zu beschleunigen.
In this second installment of the Dataflow course series, we are going to be diving deeper on developing pipelines using the Beam SDK. We start with a review of Apache Beam concepts. Next, we discuss processing streaming data using windows, watermarks and triggers. We then cover options for sources and sinks in your pipelines, schemas to express your structured data, and how to do stateful transformations using State and Timer APIs. We move onto reviewing best practices that help maximize your pipeline performance. Towards the end of the course, we introduce SQL and Dataframes to represent your business logic in Beam and how to iteratively develop pipelines using Beam notebooks.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.
In this course you will get hands-on in order to work through real-world challenges faced when building streaming data pipelines. The primary focus is on managing continuous, unbounded data with Google Cloud products.
In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.
While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.
In diesem Kurs lernen Sie Data Engineering on Google Cloud sowie die Rollen und Verantwortlichkeiten von Data Engineers kennen und sehen, wie diese mit den Angeboten von Google Cloud zusammenhängen. Außerdem erfahren Sie, wie Sie Herausforderungen im Bereich Data Engineering meistern können.
This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.
In diesem Kurs lernen Sie die KI- und ML-Angebote von Google Cloud für Projekte mit prädiktiver und generativer KI kennen. Dabei werden die Technologien, Produkte und Tools vorgestellt, die für den gesamten Lebenszyklus der Datenaufbereitung für KI verfügbar sind. Der Kurs umfasst KI‑Grundlagen, ‑Entwicklung und ‑Lösungen. Data Scientists, KI-Entwickler und ML-Engineers sollen in diesem Kurs ihre Fähigkeiten und Kenntnisse durch ansprechende Lernangebote sowie praxisorientierte Übungen erweitern.
In this course you will learn how to leverage Conversational Insights to uncover hidden information from your contact center data to increase operational efficiency and drive data-driven business decisions. Please note Contact Center AI Insights were recently renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product name for Contact Center AI Insights.
Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.
This is a introductory course to all solutions in the Contact Centre AI (CCAI) portfolio and the Generative AI features that are poised to transform them. The course also explores the CCAI go to market and engagement model, the business case around CCAI, as well as the use cases and user personas addressed by the solution.
In diesem Kurs lernen Sie KI-basierte Suchtechnologien, Tools und Anwendungen kennen. Er umfasst folgende Themen: die semantische Suche mithilfe von Vektoreinbettungen, die Hybridsuche, bei der semantische und stichwortbezogene Ansätze kombiniert werden, und Retrieval-Augmented Generation (RAG), die KI-Halluzinationen durch einen fundierten KI-Agenten minimiert. Sie sammeln praktische Erfahrungen mit der Vektorsuche in Vertex AI zum Entwickeln einer intelligenten Suchmaschine.
This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.
In this course you will learn how Conversational AI Agent Assist can help distill complex customer interactions into concise and clear summaries. Please note Dialogflow CX was recently renamed to Conversational Agents, Virtual agent renamed to Conversational agent, and CCAI Insights were renamed to Conversational Insights, and this course is in the process of being updated to reflect the new product names for Dialogflow CX, and Virtual Agent, CCAI Insights.
In this course you will learn how Agent Assist can enhance the productivity of human agents while interacting with customers through the voice channel, as well as the options available for integration with other platforms in the Conversational AI ecosystem.
In this course you will learn how Agent Assist can enhance the productivity of human agents while interacting with customers through the chat channel.
In this course you will learn the key architectural considerations that need to be taken into account when designing for the implementation of Conversational AI solutions. Please note Dialogflow CX was recently renamed to Conversational Agents and CCAI Insights was renamed to Conversational Insights.
In this course, you'll learn to develop generative agents that answer questions using websites, documents, or structured data. You will explore Vertex AI Applications and understand the advantages of data store agents, including their scalability and security. You'll learn about different data store types and also discover how to connect data stores to agents and add personalization for enhanced responses. Finally, you'll gain insights into common search configurations and troubleshooting techniques.
A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.
This is an introductory course to all solutions in the Conversational AI portfolio and the Gen AI features that are available to transform them. The course also explores the business case around Conversational AI, and the use cases and user personas addressed by the solution. Please note Dialogflow CX was recently renamed to Conversational Agents and this course is in the process of being updated to reflect the new product name for Dialogflow CX.
Text Prompt Engineering Techniques introduces you to consider different strategic approaches & techniques to deploy when writing prompts for text-based generative AI tasks.
Da die Nutzung von künstlicher Intelligenz und Machine Learning in Unternehmen weiter zunimmt, wird auch deren verantwortungsbewusste Entwicklung ein immer wichtigeres Thema. Dabei ist es für viele schwierig, die Überlegungen zur verantwortungsbewussten Anwendung von KI in die Praxis umzusetzen. Wenn Sie wissen möchten, wie sich die verantwortungsbewusste Anwendung von KI in die Praxis umsetzen, also operationalisieren lässt, finden Sie in diesem Kurs entsprechende Hilfestellungen. In diesem Kurs erfahren Sie, wie dies mit Google Cloud heutzutage möglich ist, inklusive entsprechender Best Practices und Erkenntnisse. Es wird gezeigt, welches Framework Google Cloud bietet, um einen eigenen Ansatz für die verantwortungsbewusste Anwendung von KI zu entwickeln.
Earn a skill badge by passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
Earn a skill badge by completing the Create Conversational AI Agents with Dialogflow CX quest, where you will learn how to create a conversational virtual agent, including how to: define intents and entities, use versions and environments, create conversational branching, and use IVR features. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest, and the final assessment challenge lab, to receive a skill badge that you can share with your network.
Welcome to "CCAI Operations and Implementation", the fourth course in the "Customer Experiences with Contact Center AI" series. In this course, learn some best practices for integrating conversational solutions with your existing contact center software, establishing a framework for human agent assistance, and implementing solutions securely and at scale. In this course, you'll be introduced to Agent Assist and the technology it uses so you can delight your customers with the efficiencies and accuracy of services provided when customers require human agents, connectivity protocols, APIs, and platforms which you can use to create an integration between your virtual agent and the services already established for your business, Dialogflow's Environment Management tool for deployment of different versions of your virtual agent for various purposes, compliance measures and regulations you should be aware of when bringing your virtual agent to production, and you'll be given tips from virtua…
Welcome to "Virtual Agent Development in Dialogflow CX for Software Devs", the third course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to develop more customized customer conversational solutions using Contact Center Artificial Intelligence (CCAI). In this course, you'll be introduced to more advanced and customized handling for virtual agent conversations that need to look up and convey dynamic data, and methods available to you for testing your virtual agent and logs which can be useful for understanding issues that arise. This is an intermediate course, intended for learners with the following type of role: Software developers: Codes computer software in a programming language (e.g., C++, Python, Javascript) and often using an SDK/API.
Welcome to "Virtual Agent Development in Dialogflow CX for Citizen Devs", the second course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to develop customer conversational solutions using Contact Center Artificial Intelligence (CCAI). In this course, you'll be introduced to adding voice (telephony) as a communication channel to your virtual agent conversations using Dialogflow CX.
Welcome to "CCAI Virtual Agent Development in Dialogflow ES for Software Developers", the third course in the "Customer Experiences with Contact Center AI" series. In this course, learn to use additional features of Dialogflow ES for your virtual agent, create a Firestore instance to store customer data, and implement cloud functions that access the data. With the ability to read and write customer data, learner’s virtual agents are conversationally dynamic and able to defer contact center volume from human agents. You'll be introduced to methods for testing your virtual agent and logs which can be useful for understanding issues that arise. Lastly, learn about connectivity protocols, APIs, and platforms for integrating your virtual agent with services already established for your business.
Welcome to "Virtual Agent Development in Dialogflow ES for Citizen Devs", the second course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to develop customer conversational solutions using Contact Center Artificial Intelligence (CCAI). You will use Dialogflow ES to create virtual agents and test them using the Dialogflow ES simulator. This course also provides best practices on developing virtual agents. You will also be introduced to adding voice (telephony) as a communication channel to your virtual agent conversations. Through a combination of presentations, demos, and hands-on labs, participants learn how to create virtual agents. This is an intermediate course, intended for learners with the following types of roles: Conversational designers: Designs the user experience of a virtual assistant. Translates the brand's business requirements into natural dialog flows. Citizen developers: Creates new business applications fo…
Welcome to "CCAI Conversational Design Fundamentals", the first course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to design customer conversational solutions using Contact Center Artificial Intelligence (CCAI). You will be introduced to CCAI and its three pillars (Dialogflow, Agent Assist, and Insights), and the concepts behind conversational experiences and how the study of them influences the design of your virtual agent. After taking this course you will be prepared to take your virtual agent design to the next level of intelligent conversation.
This course explores what ML is and what problems it can solve. The course also discusses best practices for implementing machine learning. You’re introduced to Vertex AI, a unified platform to quickly build, train, and deploy AutoML machine learning models. The course discusses the five phases of converting a candidate use case to be driven by machine learning, and why it’s important to not skip them. The course ends with recognizing the biases that ML can amplify and how to recognize them.
Dieser Kurs bietet eine Einführung in Vertex AI Studio, ein Tool für die Interaktion mit generativen KI-Modellen sowie das Prototyping von Geschäftsideen und ihre Umsetzung. Anhand eines eindrucksvollen Anwendungsfalls, ansprechender Lektionen und einer praktischen Übung lernen Sie den Lebenszyklus vom Prompt bis zum Produkt kennen und erfahren, wie Sie Vertex AI Studio für multimodale Gemini-Anwendungen, Prompt-Design, Prompt Engineering und Modellabstimmung einsetzen können. Ziel ist es, Ihnen aufzuzeigen, wie Sie das Potenzial von generativer KI in Ihren Projekten mit Vertex AI Studio ausschöpfen.
In diesem Kurs erfahren Sie, wie Sie mithilfe von Deep Learning ein Modell zur Bilduntertitelung erstellen. Sie lernen die verschiedenen Komponenten eines solchen Modells wie den Encoder und Decoder und die Schritte zum Trainieren und Bewerten des Modells kennen. Nach Abschluss dieses Kurses haben Sie folgende Kompetenzen erworben: Erstellen eigener Modelle zur Bilduntertitelung und Verwenden der Modelle zum Generieren von Untertiteln
Dieser Kurs bietet eine Einführung in die Transformer-Architektur und das BERT-Modell (Bidirectional Encoder Representations from Transformers). Sie lernen die Hauptkomponenten der Transformer-Architektur wie den Self-Attention-Mechanismus kennen und erfahren, wie Sie diesen zum Erstellen des BERT-Modells verwenden. Darüber hinaus werden verschiedene Aufgaben behandelt, für die BERT genutzt werden kann, wie etwa Textklassifizierung, Question Answering und Natural-Language-Inferenz. Der gesamte Kurs dauert ungefähr 45 Minuten.
In diesem Kurs wird der Aufmerksamkeitsmechanismus vorgestellt. Dies ist ein leistungsstarkes Verfahren, das die Fokussierung neuronaler Netzwerke auf bestimmte Abschnitte einer Eingabesequenz ermöglicht. Sie erfahren, wie der Aufmerksamkeitsmechanismus funktioniert und wie Sie damit die Leistung verschiedener Machine Learning-Tasks wie maschinelle Übersetzungen, Zusammenfassungen von Texten und Question Answering verbessern können.
Dieser Kurs vermittelt Ihnen eine Zusammenfassung der Encoder-Decoder-Architektur, einer leistungsstarken und gängigen Architektur, die bei Sequenz-zu-Sequenz-Tasks wie maschinellen Übersetzungen, Textzusammenfassungen und dem Question Answering eingesetzt wird. Sie lernen die Hauptkomponenten der Encoder-Decoder-Architektur kennen und erfahren, wie Sie diese Modelle trainieren und bereitstellen können. Im dazugehörigen Lab mit Schritt-für-Schritt-Anleitung können Sie in TensorFlow von Grund auf einen Code für eine einfache Implementierung einer Encoder-Decoder-Architektur erstellen, die zum Schreiben von Gedichten dient.
In diesem Kurs werden Diffusion-Modelle vorgestellt, eine Gruppe verschiedener Machine Learning-Modelle, die kürzlich einige vielversprechende Fortschritte im Bereich Bildgenerierung gemacht haben. Diffusion-Modelle basieren auf physikalischen Konzepten der Thermodynamik und sind in den letzten Jahren in der Forschung und Industrie sehr beliebt geworden. Dabei stützen sich Diffusion-Modelle auf viele innovative Modelle und Tools zur Bildgenerierung in Google Cloud. In diesem Kurs werden Ihnen die theoretischen Grundlagen der Diffusion-Modelle erläutert und wie Sie diese Modelle über Vertex AI trainieren und bereitstellen können.
Earn a skill badge by completing the Introduction to Generative AI, Introduction to Large Language Models and Introduction to Responsible AI courses. By passing the final quiz, you'll demonstrate your understanding of foundational concepts in generative AI. A skill badge is a digital badge issued by Google Cloud in recognition of your knowledge of Google Cloud products and services. Share your skill badge by making your profile public and adding it to your social media profile.
In diesem Einführungskurs im Microlearning-Format wird erklärt, was verantwortungsbewusste Anwendung von KI bedeutet, warum sie wichtig ist und wie Google dies in seinen Produkten berücksichtigt. Darüber hinaus werden die 7 KI-Grundsätze von Google behandelt.
In diesem Einführungskurs im Microlearning-Format wird untersucht, was Large Language Models (LLM) sind, für welche Anwendungsfälle sie genutzt werden können und wie die LLM-Leistung durch Feinabstimmung von Prompts gesteigert werden kann. Darüber hinaus werden Tools von Google behandelt, die das Entwickeln eigener Anwendungen basierend auf generativer KI ermöglichen.
In diesem Einführungskurs im Microlearning-Format wird erklärt, was generative KI ist, wie sie genutzt wird und wie sie sich von herkömmlichen Methoden für Machine Learning unterscheidet. Darüber hinaus werden Tools von Google behandelt, mit denen Sie eigene Anwendungen basierend auf generativer KI entwickeln können.
This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.