加入 登录

Jayaraman Sridharan

成为会员时间:2023

钻石联赛

54650 积分
Build MLOps Pipelines using Vertex AI Earned Aug 17, 2024 EDT
Google Cloud 的 AI 和機器學習服務簡介 Earned Aug 17, 2024 EDT
透過 Vertex AI 建構及部署機器學習解決方案 Earned Aug 16, 2024 EDT
Launching into Machine Learning Earned Aug 16, 2024 EDT
Computer Vision Fundamentals with Google Cloud Earned Aug 8, 2024 EDT
Natural Language Processing on Google Cloud Earned May 23, 2024 EDT
在 Google Cloud 設定應用程式開發環境 Earned May 21, 2024 EDT
Production Machine Learning Systems Earned May 20, 2024 EDT
Feature Engineering Earned May 18, 2024 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned May 18, 2024 EDT
Machine Learning in the Enterprise Earned Apr 18, 2024 EDT
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned Mar 25, 2024 EDT
Machine Learning Operations (MLOps): Getting Started Earned Mar 24, 2024 EDT
Building Resilient Streaming Systems on Google Cloud Platform Earned Feb 15, 2024 EST
Smart Analytics, Machine Learning, and AI on Google Cloud Earned Feb 12, 2024 EST
使用 BigQuery ML 為預測模型進行資料工程 Earned Feb 7, 2024 EST
透過 BigQuery 建構資料倉儲 Earned Feb 6, 2024 EST
在 Google Cloud 為機器學習 API 準備資料 Earned Jan 31, 2024 EST
Serverless Data Processing with Dataflow: Foundations Earned Jan 11, 2024 EST
設定 Google Cloud 網路 Earned Jan 4, 2024 EST
Google Kubernetes Engine 成本效益最佳化 Earned Jan 4, 2024 EST
雲端架構:設計、實作與管理 Earned Dec 21, 2023 EST
在 Compute Engine 導入 Cloud Load Balancing Earned Oct 9, 2023 EDT
在 Google Cloud 使用 Terraform 建構基礎架構 Earned Oct 4, 2023 EDT
在 Google Cloud 設定應用程式開發環境 Earned Oct 3, 2023 EDT
開始使用 Google Kubernetes Engine Earned Oct 1, 2023 EDT
Preparing for your Professional Cloud Architect Journey Earned Sep 16, 2023 EDT

This skill badge aims to evaluate a partner's ability to utilize various methods available to them to automate manual processes involved when deploying machine learning models using Vertex AI. Manual processes are often not scalable which is why advancing an organization's AI/ML adoption requires ML Ops processes to improve the rate of model training, experimentation and deployment.

了解详情

本課程介紹 Google Cloud 中的 AI 和機器學習 (ML) 服務。這些服務可建構預測式和生成式 AI 專案。我們將帶您探索「從資料到 AI」生命週期中適用的技術、產品和工具,包括 AI 基礎、開發選項及解決方案。課程目的是藉由生動的學習體驗與實作練習,增進數據資料學家、AI 開發人員和機器學習工程師的技能與知識。

了解详情

完成 透過 Vertex AI 建構及部署機器學習解決方案 課程,即可瞭解如何使用 Google Cloud 的 Vertex AI 平台、AutoML 和自訂訓練服務, 訓練、評估、調整、解釋及部署機器學習模型。 這個技能徽章課程適合專業數據資料學家和機器學習 工程師,完成即可取得中階技能徽章。技能 徽章是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品和服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境應用相關知識。完成這個技能徽章課程 和結業評量挑戰實驗室,就能獲得數位徽章, 並與親友分享。

了解详情

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

了解详情

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

了解详情

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

了解详情

只要修完「在 Google Cloud 設定應用程式開發環境」課程,就能獲得技能徽章。 在本課程中,您將學會如何使用以下技術的基本功能,建構和連結以儲存空間為中心的雲端基礎架構:Cloud Storage、Identity and Access Management、Cloud Functions 和 Pub/Sub。

了解详情

This course covers how to implement the various flavors of production ML systems— static, dynamic, and continuous training; static and dynamic inference; and batch and online processing. You delve into TensorFlow abstraction levels, the various options for doing distributed training, and how to write distributed training models with custom estimators. This is the second course of the Advanced Machine Learning on Google Cloud series. After completing this course, enroll in the Image Understanding with TensorFlow on Google Cloud course.

了解详情

This course explores the benefits of using Vertex AI Feature Store, how to improve the accuracy of ML models, and how to find which data columns make the most useful features. This course also includes content and labs on feature engineering using BigQuery ML, Keras, and TensorFlow.

了解详情

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

了解详情

This course takes a real-world approach to the ML Workflow through a case study. An ML team faces several ML business requirements and use cases. The team must understand the tools required for data management and governance and consider the best approach for data preprocessing. The team is presented with three options to build ML models for two use cases. The course explains why they would use AutoML, BigQuery ML, or custom training to achieve their objectives.

了解详情

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

了解详情

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

了解详情

This 1-week, accelerated on-demand course builds upon Google Cloud Platform Big Data and Machine Learning Fundamentals. Through a combination of video lectures, demonstrations, and hands-on labs, you'll learn to build streaming data pipelines using Google cloud Pub/Sub and Dataflow to enable real-time decision making. You will also learn how to build dashboards to render tailored output for various stakeholder audiences.

了解详情

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

了解详情

完成使用 BigQuery ML 為預測模型進行資料工程技能徽章中階課程, 即可證明自己具備下列知識與技能:運用 Dataprep by Trifacta 建構連至 BigQuery 的資料轉換 pipeline; 使用 Cloud Storage、Dataflow 和 BigQuery 建構「擷取、轉換及載入」(ETL) 工作負載, 以及使用 BigQuery ML 建構機器學習模型。

了解详情

完成 透過 BigQuery 建構資料倉儲 技能徽章中階課程,即可證明您具備下列技能: 彙整資料以建立新資料表、排解彙整作業問題、利用聯集附加資料、建立依日期分區的資料表, 以及在 BigQuery 使用 JSON、陣列和結構體。

了解详情

完成 在 Google Cloud 為機器學習 API 準備資料 技能徽章入門課程,即可證明您具備下列技能: 使用 Dataprep by Trifacta 清理資料、在 Dataflow 執行資料管道、在 Dataproc 建立叢集和執行 Apache Spark 工作,以及呼叫機器學習 API,包含 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。

了解详情

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

了解详情

完成「設定 Google Cloud 網路」課程,即可獲得技能徽章。 您將瞭解如何在 Google Cloud Platform 執行基本的網路工作,包括建立自訂網路、新增子網路防火牆規則,還有建立 VM 並測試 VM 之間的通訊延遲。

了解详情

完成 Google Kubernetes Engine 成本效益最佳化 技能徽章中階課程, 即可證明您具備下列技能:建立及管理多租戶叢集、依據命名空間監控資源使用量、 設定自動調度叢集和 Pod 資源以提升效能、設定負載平衡以最佳化 資源分配,以及導入有效性和完備性探測,確保應用程式維持健康並符合成本效益。

了解详情

完成 雲端架構:設計、實作與管理 課程即可獲得 技能徽章,證明您具備下列技能: 使用 Apache 網路伺服器部署可公開存取的網站、使用開機指令碼設定 Compute Engine VM、 使用 Windows 防禦主機和防火牆規則設定安全的 RDP、建構 Docker 映像檔並部署至 Kubernetes 叢集,然後進行更新,以及建立 Cloud SQL 執行個體並匯入 MySQL 資料庫。 這個技能徽章課程是絕佳的 資源,可讓您瞭解Google Cloud 認證專業雲端架構師認證測驗涵蓋的主題。 「技能徽章」是 Google Cloud 核發的獨家數位徽章, 用於肯定您在 Google Cloud 產品與服務方面的精通程度, 代表您已通過測驗,能在互動式實作環境中應用相關知識。完成 本課程及結業評量挑戰研究室,即可獲得技能徽章 並與親友分享。

了解详情

完成「在 Compute Engine 導入 Cloud Load Balancing」技能徽章入門課程,即可證明您具備下列技能: 在 Compute Engine 建立及部署虛擬機器, 以及設定網路和應用程式負載平衡器。

了解详情

完成「在 Google Cloud 使用 Terraform 建構基礎架構」技能徽章中階課程, 即可證明自己具備下列知識與技能:使用 Terraform 的基礎架構即程式碼 (IaC) 原則、運用 Terraform 設定佈建及管理 Google Cloud 資源、有效管理狀態 (本機和遠端),以及將 Terraform 程式碼模組化,以利重複使用和管理。

了解详情

只要修完「在 Google Cloud 設定應用程式開發環境」課程,就能獲得技能徽章。 在本課程中,您將學會如何使用以下技術的基本功能,建構和連結以儲存空間為中心的雲端基礎架構:Cloud Storage、Identity and Access Management、Cloud Functions 和 Pub/Sub。

了解详情

歡迎參加「開始使用 Google Kubernetes Engine」課程。Kubernetes 是位於應用程式和硬體基礎架構之間的軟體層。如果您對這項技術感興趣,這堂課程可以滿足您的需求。有了 Google Kubernetes Engine,您就能在 Google Cloud 中以代管服務的形式使用 Kubernetes。 本課程的目標在於介紹 Google Kubernetes Engine (常簡稱為 GKE) 的基本概念,以及如何將應用程式容器化,以便在 Google Cloud 中執行。課程首先會初步介紹 Google Cloud,隨後簡介容器、Kubernetes、Kubernetes 架構和 Kubernetes 作業。

了解详情

This course helps learners create a study plan for the PCA (Professional Cloud Architect) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

了解详情