Inscreva-se Fazer login

Jayaraman Sridharan

Participante desde 2023

Liga Diamante

54650 pontos
Build MLOps Pipelines using Vertex AI Earned Aug 17, 2024 EDT
Introdução à IA e ao machine learning no Google Cloud Earned Aug 17, 2024 EDT
Como criar e implantar soluções de machine learning na Vertex AI Earned Aug 16, 2024 EDT
Launching into Machine Learning - Português Brasileiro Earned Aug 16, 2024 EDT
Computer Vision Fundamentals with Google Cloud Earned Aug 8, 2024 EDT
Natural Language Processing on Google Cloud Earned May 23, 2024 EDT
Como configurar um ambiente de desenvolvimento de apps no Google Cloud Earned May 21, 2024 EDT
Criação de sistemas de machine learning de produção Earned May 20, 2024 EDT
Engenharia de atributos Earned May 18, 2024 EDT
Como criar, treinar e implantar modelos de ML com o Keras no Google Cloud Earned May 18, 2024 EDT
Machine learning nas empresas Earned Apr 18, 2024 EDT
Operações de machine learning (MLOps) com a Vertex AI: como gerenciar atributos Earned Mar 25, 2024 EDT
Operações de machine learning (MLOps): introdução Earned Mar 24, 2024 EDT
Building Resilient Streaming Systems on Google Cloud Platform Earned Feb 15, 2024 EST
Smart Analytics, Machine Learning, and AI on Google Cloud - Português Brasileiro Earned Feb 12, 2024 EST
Dados de engenharia para modelagem preditiva com o BigQuery ML Earned Feb 7, 2024 EST
Criar um data warehouse com o BigQuery Earned Feb 6, 2024 EST
Preparar dados para APIs de ML no Google Cloud Earned Jan 31, 2024 EST
Processamento de dados sem servidor com o Dataflow: fundamentos Earned Jan 11, 2024 EST
Como configurar uma rede do Google Cloud Earned Jan 4, 2024 EST
Como otimizar custos do Google Kubernetes Engine Earned Jan 4, 2024 EST
Arquitetura de nuvem: como criar, implantar e gerenciar Earned Dec 21, 2023 EST
Implementação do Cloud Load Balancing no Compute Engine Earned Oct 9, 2023 EDT
Como criar infraestrutura com o Terraform no Google Cloud Earned Oct 4, 2023 EDT
Como configurar um ambiente de desenvolvimento de apps no Google Cloud Earned Oct 3, 2023 EDT
Introdução ao Google Kubernetes Engine Earned Oct 1, 2023 EDT
Preparing for Your Professional Cloud Architect Journey - Português Brasileiro Earned Sep 16, 2023 EDT

This skill badge aims to evaluate a partner's ability to utilize various methods available to them to automate manual processes involved when deploying machine learning models using Vertex AI. Manual processes are often not scalable which is why advancing an organization's AI/ML adoption requires ML Ops processes to improve the rate of model training, experimentation and deployment.

Saiba mais

Neste curso, apresentamos os recursos de IA e machine learning (ML) no Google Cloud que criam projetos de IA generativa e preditiva. Vamos conhecer as tecnologias, os produtos e as ferramentas disponíveis em todo o ciclo de vida de dados à IA, o que inclui os fundamentos dessa tecnologia, o desenvolvimento e as soluções dela. O objetivo é ajudar cientistas de dados, desenvolvedores de IA e engenheiros de ML a aprimorar habilidades e o conhecimento com experiências de aprendizado envolventes e exercícios práticos.

Saiba mais

Conquiste o selo de habilidade intermediário ao concluir o curso Como criar e implantar soluções de machine learning na Vertex AI. Nele você aprenderá a usar a plataforma Vertex AI, o AutoML e os serviços de treinamento personalizados para treinar, avaliar, ajustar, explicar e implantar modelos de machine learning. Esse curso com selo de habilidade é destinado a cientistas de dados e engenheiros de machine learning. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como forma de reconhecer sua proficiência com os produtos e serviços do Cloud e comprovam sua habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua o curso com selo de habilidade e o laboratório com desafio da avaliação final para receber um selo digital que pode ser compartilhado com sua rede.

Saiba mais

O curso começa com a seguinte discussão: como melhorar a qualidade dos dados e fazer uma análise exploratória deles? Descrevemos o AutoML na Vertex AI e como criar, treinar e implantar um modelo de ML sem escrever nenhuma linha de código. Você vai conhecer os benefícios do BigQuery ML. Depois vamos falar sobre como otimizar um modelo de machine learning (ML) e como a generalização e a amostragem podem ajudar na avaliação de qualidade dos modelos de ML em treinamentos personalizados.

Saiba mais

This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.

Saiba mais

This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.

Saiba mais

Conquiste um selo de habilidade ao concluir o curso Como configurar um ambiente de desenvolvimento de apps no Google Cloud. Nele, você aprende a criar e conectar uma infraestrutura em nuvem focada em armazenamento usando recursos básicos das seguintes tecnologias: Cloud Storage, Identity and Access Management, Cloud Functions e Pub/Sub.

Saiba mais

Neste curso, vamos conhecer os componentes e as práticas recomendadas para criar sistemas de ML com alto desempenho em ambientes de produção. Vamos abordar algumas considerações comuns relacionadas à criação desses sistemas, como treinamento estático e dinâmico, inferência estática e dinâmica, TensorFlow distribuído e TPUs. O objetivo deste curso é conhecer as características de um sistema de ML eficiente, que vão muito além da capacidade de fazer boas previsões.

Saiba mais

O curso apresenta os benefícios de usar a Vertex AI Feature Store e ensina a melhorar a acurácia dos modelos de ML e a identificar as colunas de dados que apresentam os atributos mais úteis. Ele também oferece conteúdo teórico e laboratórios sobre engenharia de atributos com BigQuery ML, Keras e TensorFlow.

Saiba mais

Este curso ensina a criar modelos de ML com o TensorFlow e o Keras, melhorar a acurácia deles e desenvolver modelos para uso em escala.

Saiba mais

Este curso tem uma abordagem realista para o fluxo de trabalho de ML usando um estudo de caso em que uma equipe tem vários casos de uso e exigências comerciais em ML. Essa equipe precisa conhecer as ferramentas necessárias para a governança e o gerenciamento de dados e decidir a melhor abordagem para o processamento deles. A equipe terá três opções para criar modelos de ML em dois casos de uso. Neste curso, explicamos quando usar o AutoML, o BigQuery ML ou o treinamento personalizado para alcançar os objetivos.

Saiba mais

Neste curso, os participantes vão conhecer as ferramentas de MLOps e as práticas recomendadas para a implantação, a avaliação, o monitoramento e a operação de sistemas de ML de produção no Google Cloud. MLOps é uma disciplina com foco na implantação, teste, monitoramento e automação de sistemas de ML em produção. Também incluímos experiências práticas de uso da ingestão de streaming do Vertex AI Feature Store na camada do SDK.

Saiba mais

Neste curso, os participantes vão conhecer as ferramentas de MLOps e as práticas recomendadas para a implantação, a avaliação, o monitoramento e a operação de sistemas de ML de produção no Google Cloud. MLOps é uma disciplina com foco na implantação, no teste, no monitoramento e na automação de sistemas de ML em produção. Profissionais de engenharia de machine learning usam ferramentas para fazer melhorias contínuas e avaliações de modelos implantados. São profissionais que trabalham com ciências de dados e desenvolvem modelos para garantir a velocidade e o rigor na implantação de modelos com melhor desempenho.

Saiba mais

This 1-week, accelerated on-demand course builds upon Google Cloud Platform Big Data and Machine Learning Fundamentals. Through a combination of video lectures, demonstrations, and hands-on labs, you'll learn to build streaming data pipelines using Google cloud Pub/Sub and Dataflow to enable real-time decision making. You will also learn how to build dashboards to render tailored output for various stakeholder audiences.

Saiba mais

A incorporação de machine learning em pipelines de dados aumenta a capacidade de extrair insights dessas informações. Neste curso, mostramos as várias formas de incluir essa tecnologia em pipelines de dados do Google Cloud. Para casos de pouca ou nenhuma personalização, vamos falar sobre o AutoML. Para usar recursos de machine learning mais personalizados, vamos apresentar os Notebooks e o machine learning do BigQuery (BigQuery ML). No curso, você também vai aprender sobre a produção de soluções de machine learning usando a Vertex AI.

Saiba mais

Conclua o selo de habilidade intermediário Dados de engenharia para modelagem preditiva com o BigQuery ML para mostrar que você sabe: criar pipelines de transformação de dados no BigQuery usando o Dataprep by Trifacta; usar o Cloud Storage, o Dataflow e o BigQuery para criar fluxos de trabalho de extração, transformação e carregamento de dados (ELT); e criar modelos de machine learning usando o BigQuery ML.

Saiba mais

Conclua o selo de habilidade intermediário Criar um data warehouse com o BigQuery para mostrar que você sabe mesclar dados para criar novas tabelas; solucionar problemas de mesclagens; adicionar dados ao final com uniões; criar tabelas particionadas por data; além de trabalhar com JSON, matrizes e structs no BigQuery.

Saiba mais

Conquiste o selo de habilidade introdutório Preparar dados para APIs de ML no Google Cloud para demonstrar que você é capaz de: limpar dados com o Dataprep by Trifacta, executar pipelines de dados no Dataflow, criar clusters e executar jobs do Apache Spark no Dataproc e chamar APIs de ML, incluindo as APIs Cloud Natural Language, Google Cloud Speech-to-Text e Video Intelligence.

Saiba mais

Este é o primeiro de uma série de três cursos sobre processamento de dados sem servidor com o Dataflow. Nele, vamos relembrar o que é o Apache Beam e qual é a relação entre ele e o Dataflow. Depois, falaremos sobre a visão do Apache Beam e os benefícios do framework de portabilidade desse modelo de programação. Com esse processo, o desenvolvedor pode usar a linguagem de programação favorita com o back-end de execução que quiser. Em seguida, mostraremos como o Dataflow permite a separação entre a computação e o armazenamento para economizar dinheiro. Além disso, você vai aprender como as ferramentas de identidade, acesso e gerenciamento interagem com os pipelines do Dataflow. Por fim, vamos ver como implementar o modelo de segurança ideal para seu caso de uso no Dataflow.

Saiba mais

Receba um selo de habilidade ao completar o curso Configurar uma rede do Google Cloud, que ensina como realizar tarefas básicas no Google Cloud Platform, criar uma rede personalizada, adicionar regras de firewall de sub-redes e criar VMs para testar a latência durante a comunicação.

Saiba mais

Conclua o selo de habilidade intermediário Como otimizar custos do Google Kubernetes Engine para mostrar que você sabe criar e gerenciar clusters multilocatários, monitorar o uso de recursos por namespace, configurar o escalonamento automático de clusters e pods para maior eficiência, definir o balanceamento de carga para distribuição ideal de recursos e implementar sondagens de atividade e prontidão para garantir a integridade e um bom custo-benefício do aplicativo.

Saiba mais

Ganhe um selo de habilidade ao concluir o curso Arquitetura de nuvem: como criar, implantar e gerenciar e mostre que você sabe: implantar um site publicamente acessível usando servidores da Web Apache, configurar uma VM no Compute Engine usando scripts de inicialização, configurar um RDP seguro usando um Bastion Host Windows e regras de firewall, criar e implantar uma imagem Docker em um cluster do Kubernetes e atualizá-lo, além de criar uma instância do CloudSQL e importar um banco de dados do MySQL. Este selo de habilidade é um ótimo recurso para entender tópicos que vão aparecer no exame de certificação Professional Cloud Architect com Certificação em Google Cloud. Os selos de habilidade são digitais e exclusivos. Eles são emitidos pelo Google Cloud como reconhecimento da sua proficiência com os produtos e serviços do Cloud e comprovam sua habilidade de aplicar seu conhecimento em um ambiente prático e interativo. Conclua o curso e o laboratório com desafio da avaliação final pa…

Saiba mais

Conclua o selo de habilidade introdutório Implementação do Cloud Load Balancing no Compute Engine para demonstrar que você sabe: criar e implantar máquinas virtuais no Compute Engine; configurar balanceadores de carga de rede e de aplicativo.

Saiba mais

Conclua o selo de habilidade intermediário Como criar infraestrutura com o Terraform no Google Cloud para mostrar que você sabe: usar os princípios de infraestrutura como código (IaC, na sigla em inglês) no Terraform, provisionar e gerenciar recursos do Google Cloud usando configurações do Terraform, gerenciamento de estado eficaz (local e remoto) e modularização do código do Terraform para reutilização e organização.

Saiba mais

Conquiste um selo de habilidade ao concluir o curso Como configurar um ambiente de desenvolvimento de apps no Google Cloud. Nele, você aprende a criar e conectar uma infraestrutura em nuvem focada em armazenamento usando recursos básicos das seguintes tecnologias: Cloud Storage, Identity and Access Management, Cloud Functions e Pub/Sub.

Saiba mais

Bem-vindo ao curso "Introdução ao Google Kubernetes Engine". Se você têm interesse no Kubernetes, uma camada de software que fica entre seus aplicativos e a infraestrutura de hardware, aqui é o lugar certo. O Google Kubernetes Engine transforma o Kubernetes em um serviço gerenciado no Google Cloud. O objetivo deste curso é apresentar os conceitos básicos do Google Kubernetes Engine, ou GKE, como é comumente conhecido, e aprender a conteinerizar e executar aplicativos no Google Cloud. O curso começa com uma introdução básica ao Google Cloud e é seguido pelos conceitos gerais dos contêineres e do Kubernetes, da arquitetura do Kubernetes e das operações do Kubernetes.

Saiba mais

Este curso ajuda a criar um plano de estudos para o exame de certificação Professional Cloud Architect (PCA). É possível conferir a amplitude e o escopo dos domínios abordados no exame. Os estudantes também podem acompanhar os preparativos para o exame e criar planos de estudos individuais.

Saiba mais