Join Sign in

sakthivel subramani

Member since 2022

Silver League

7800 points
Engineer Data for Predictive Modeling with BigQuery ML Earned Ağu 7, 2022 EDT
Google Cloud'da Makine Öğrenimi API'leri İçin Veri Hazırlama Earned Ağu 3, 2022 EDT
Build Streaming Data Pipelines on Google Cloud Earned Tem 28, 2022 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud Earned Tem 28, 2022 EDT
Build Batch Data Pipelines on Google Cloud Earned Tem 28, 2022 EDT
Compute Engine İçin Cloud Load Balancing'i Uygulama Earned Tem 26, 2022 EDT
Build Data Lakes and Data Warehouses on Google Cloud Earned Tem 7, 2022 EDT
Google Cloud Big Data and Machine Learning Fundamentals Earned Tem 6, 2022 EDT

Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML.

Learn more

Giriş düzeyindeki Google Cloud'da Makine Öğrenimi API'leri İçin Veri Hazırlama beceri rozetini tamamlayarak şu konulardaki becerilerinizi gösterin: Dataprep by Trifacta ile veri temizleme, Dataflow'da veri ardışık düzenleri çalıştırma, Dataproc'ta küme oluşturma ve Apache Spark işleri çalıştırma ve makine öğrenimi API'lerini (Cloud Natural Language API, Google Cloud Speech-to-Text API ve Video Intelligence API dahil olmak üzere) çağırma.

Learn more

In this course you will get hands-on in order to work through real-world challenges faced when building streaming data pipelines. The primary focus is on managing continuous, unbounded data with Google Cloud products.

Learn more

Incorporating machine learning into data pipelines increases the ability to extract insights from data. This course covers ways machine learning can be included in data pipelines on Google Cloud. For little to no customization, this course covers AutoML. For more tailored machine learning capabilities, this course introduces Notebooks and BigQuery machine learning (BigQuery ML). Also, this course covers how to productionalize machine learning solutions by using Vertex AI.

Learn more

In this intermediate course, you will learn to design, build, and optimize robust batch data pipelines on Google Cloud. Moving beyond fundamental data handling, you will explore large-scale data transformations and efficient workflow orchestration, essential for timely business intelligence and critical reporting. Get hands-on practice using Dataflow for Apache Beam and Serverless for Apache Spark (Dataproc Serverless) for implementation, and tackle crucial considerations for data quality, monitoring, and alerting to ensure pipeline reliability and operational excellence. A basic knowledge of data warehousing, ETL/ELT, SQL, Python, and Google Cloud concepts is recommended.

Learn more

Giriş düzeyindeki Compute Engine İçin Cloud Load Balancing'i Uygulama beceri rozetini tamamlayarak şu konulardaki becerilerinizi gösterin: Compute Engine'de sanal makineler oluşturma ve dağıtma. Ağ ve uygulama yük dengeleyicileri yapılandırma.

Learn more

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

Learn more

This course introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud.

Learn more