Inscreva-se Fazer login

Souvik Mondal

Participante desde 2022

Liga Bronze

1800 pontos
Dados de engenharia para modelagem preditiva com o BigQuery ML Earned Mar 31, 2022 EDT
Preparar dados para APIs de ML no Google Cloud Earned Mar 16, 2022 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud - Português Brasileiro Earned Mar 3, 2022 EST
Como criar pipelines de dados de streaming no Google Cloud Earned Feb 22, 2022 EST
Implementação do Cloud Load Balancing no Compute Engine Earned Feb 20, 2022 EST
Como criar data lakes e data warehouses no Google Cloud Earned Feb 6, 2022 EST

Conclua o selo de habilidade intermediário Dados de engenharia para modelagem preditiva com o BigQuery ML para mostrar que você sabe: criar pipelines de transformação de dados no BigQuery usando o Dataprep by Trifacta; usar o Cloud Storage, o Dataflow e o BigQuery para criar fluxos de trabalho de extração, transformação e carregamento de dados (ELT); e criar modelos de machine learning usando o BigQuery ML.

Saiba mais

Conquiste o selo de habilidade introdutório Preparar dados para APIs de ML no Google Cloud para demonstrar que você é capaz de: limpar dados com o Dataprep by Trifacta, executar pipelines de dados no Dataflow, criar clusters e executar jobs do Apache Spark no Dataproc e chamar APIs de ML, incluindo as APIs Cloud Natural Language, Google Cloud Speech-to-Text e Video Intelligence.

Saiba mais

A incorporação de machine learning em pipelines de dados aumenta a capacidade de extrair insights dessas informações. Neste curso, mostramos as várias formas de incluir essa tecnologia em pipelines de dados do Google Cloud. Para casos de pouca ou nenhuma personalização, vamos falar sobre o AutoML. Para usar recursos de machine learning mais personalizados, vamos apresentar os Notebooks e o machine learning do BigQuery (BigQuery ML). No curso, você também vai aprender sobre a produção de soluções de machine learning usando a Vertex AI.

Saiba mais

Neste curso, você vai resolver desafios reais enfrentados na criação de pipelines de dados de streaming. O foco é gerenciar dados contínuos e ilimitados com os produtos do Google Cloud.

Saiba mais

Conclua o selo de habilidade introdutório Implementação do Cloud Load Balancing no Compute Engine para demonstrar que você sabe: criar e implantar máquinas virtuais no Compute Engine; configurar balanceadores de carga de rede e de aplicativo.

Saiba mais

Embora as abordagens tradicionais de uso de data lakes e data warehouses possam ser eficazes, elas têm alguns problemas, principalmente em grandes ambientes corporativos. Este curso apresenta o conceito de data lakehouse e os produtos do Google Cloud usados para criar um. Uma arquitetura de lakehouse usa fontes de dados de padrão aberto e combina os melhores atributos de data lakes e data warehouses, o que resolve muitos desses problemas.

Saiba mais