Rejoindre Se connecter

Souvik Mondal

Date d'abonnement : 2022

Ligue de bronze

1800 points
Ingénierie des données pour la modélisation prédictive avec BigQuery ML Earned mars 31, 2022 EDT
Préparer des données pour les API de ML sur Google Cloud Earned mars 16, 2022 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud - Français Earned mars 3, 2022 EST
Créer des pipelines de flux de données sur Google Cloud Earned fév. 22, 2022 EST
Implémenter Cloud Load Balancing pour Compute Engine Earned fév. 20, 2022 EST
Créer des lacs de données et des entrepôts de données sur Google Cloud Earned fév. 6, 2022 EST

Terminez le cours intermédiaire Ingénierie des données pour la modélisation prédictive avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création de pipelines de transformation des données dans BigQuery avec Dataprep by Trifacta ; l'utilisation de Cloud Storage, Dataflow et BigQuery pour créer des workflows ETL (Extract, Transform and Load) ; et la création de modèles de machine learning avec BigQuery ML.

En savoir plus

Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence.

En savoir plus

Intégrer le machine learning à des pipelines de données renforce la capacité à dégager des insights des données. Ce cours passera en revue plusieurs façons d'intégrer le machine learning à des pipelines de données sur Google Cloud. Vous découvrirez AutoML pour les cas ne nécessitant que peu de personnalisation (voire aucune), ainsi que Notebooks et BigQuery ML pour les situations qui requièrent des capacités de machine learning plus adaptées. Enfin, vous apprendrez à utiliser des solutions de machine learning en production avec Vertex AI.

En savoir plus

Dans ce cours, vous allez vous exercer à résoudre des problèmes concrets rencontrés lors de la création de pipelines de flux données. L'objectif principal est de gérer des données continues et illimitées avec les produits Google Cloud.

En savoir plus

Terminez le cours d'introduction Implémenter Cloud Load Balancing pour Compute Engine pour recevoir un badge démontrant vos compétences dans les domaines suivants : Créer et déployer des machines virtuelles dans Compute Engine Configurer des équilibreurs de charge réseau et d'application.

En savoir plus

Bien que les approches traditionnelles utilisant des lacs de données et des entrepôts de données puissent être efficaces, elles présentent des inconvénients, en particulier dans les grands environnements d'entreprise. Ce cours présente le concept de data lakehouse et les produits Google Cloud utilisés pour en créer un. Une architecture de lakehouse utilise des sources de données basées sur des normes ouvertes et combine les meilleures fonctionnalités des lacs et des entrepôts de données, ce qui permet de pallier de nombreuses lacunes.

En savoir plus