Dołącz Zaloguj się

Diego Castronuovo

Jest członkiem od 2024

Liga diamentowa

15415 pkt.
Intro to CCAI and CCAI Engagement Framework Earned wrz 10, 2024 EDT
Customer Engagement Suite with Google AI Architecture Earned sie 7, 2024 EDT
DEPRECATED Build and Deploy Machine Learning Solutions on Vertex AI Earned cze 12, 2024 EDT
Build MLOps Pipelines using Vertex AI Earned cze 11, 2024 EDT
Machine Learning Operations (MLOps) with Vertex AI: Manage Features Earned maj 20, 2024 EDT
Machine Learning Operations (MLOps): Getting Started Earned maj 17, 2024 EDT
Build, Train and Deploy ML Models with Keras on Google Cloud Earned maj 15, 2024 EDT
Launching into Machine Learning Earned maj 14, 2024 EDT
Introduction to AI and Machine Learning on Google Cloud Earned maj 10, 2024 EDT
Przygotowywanie danych do użycia z interfejsami ML w Google Cloud Earned maj 10, 2024 EDT

This is a introductory course to all solutions in the Contact Centre AI (CCAI) portfolio and the Generative AI features that are poised to transform them. The course also explores the CCAI go to market and engagement model, the business case around CCAI, as well as the use cases and user personas addressed by the solution.

Więcej informacji

In this course you will learn the key architectural considerations that need to be taken into account when designing for the implementation of Conversational AI solutions. Please note Dialogflow CX was recently renamed to Conversational Agents and CCAI Insights was renamed to Conversational Insights.

Więcej informacji

Earn the intermediate skill badge by completing the Build and Deploy Machine Learning Solutions on Vertex AI skill badge course, where you learn how to use Google Cloud's Vertex AI platform, AutoML, and custom training services to train, evaluate, tune, explain, and deploy machine learning models.

Więcej informacji

This skill badge aims to evaluate a partner's ability to utilize various methods available to them to automate manual processes involved when deploying machine learning models using Vertex AI. Manual processes are often not scalable which is why advancing an organization's AI/ML adoption requires ML Ops processes to improve the rate of model training, experimentation and deployment.

Więcej informacji

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Learners will get hands-on practice using Vertex AI Feature Store's streaming ingestion at the SDK layer.

Więcej informacji

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Więcej informacji

This course covers building ML models with TensorFlow and Keras, improving the accuracy of ML models and writing ML models for scaled use.

Więcej informacji

The course begins with a discussion about data: how to improve data quality and perform exploratory data analysis. We describe Vertex AI AutoML and how to build, train, and deploy an ML model without writing a single line of code. You will understand the benefits of Big Query ML. We then discuss how to optimize a machine learning (ML) model and how generalization and sampling can help assess the quality of ML models for custom training.

Więcej informacji

This course introduces Google Cloud's AI and machine learning (ML) capabilities, with a focus on developing both generative and predictive AI projects. It explores the various technologies, products, and tools available throughout the data-to-AI lifecycle, empowering data scientists, AI developers, and ML engineers to enhance their expertise through interactive exercises.

Więcej informacji

Ukończ szkolenie wprowadzające Przygotowywanie danych do użycia z interfejsami ML w Google Cloud, aby zdobyć odznakę potwierdzającą zdobycie następujących umiejętności: czyszczenie danych przy użyciu usługi Dataprep firmy Trifacta, uruchamianie potoków danych w Dataflow, tworzenie klastrów i uruchamianie zadań Apache Spark w Dataproc, a także wywoływanie interfejsów API dotyczących uczenia maszynowego, w tym Cloud Natural Language API, Google Cloud Speech-to-Text API oraz Video Intelligence API.

Więcej informacji