Complete the Extend Gemini with controlled generation and Tool use skill badge to demonstrate your proficiency in connecting models to external tools and APIs. This allows models to augment their knowledge, extend their capabilities and interact with external systems to take actions such as sending an email. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the assessment challenge lab, to receive a skill badge that you can share with your network. When you complete this course, you can earn the badge displayed here and claim it on Credly! Boost your cloud career by showing the world the skills you have developed!"
Este é o primeiro de uma série de três cursos sobre processamento de dados sem servidor com o Dataflow. Nele, vamos relembrar o que é o Apache Beam e qual é a relação entre ele e o Dataflow. Depois, falaremos sobre a visão do Apache Beam e os benefícios do framework de portabilidade desse modelo de programação. Com esse processo, o desenvolvedor pode usar a linguagem de programação favorita com o back-end de execução que quiser. Em seguida, mostraremos como o Dataflow permite a separação entre a computação e o armazenamento para economizar dinheiro. Além disso, você vai aprender como as ferramentas de identidade, acesso e gerenciamento interagem com os pipelines do Dataflow. Por fim, vamos ver como implementar o modelo de segurança ideal para seu caso de uso no Dataflow.
Confira neste curso uma introdução ao uso do Terraform para Google Cloud. Nele, você aprende como o Terraform pode ser usado para implementar infraestrutura como código e aplicar alguns dos principais recursos e funcionalidades para criar e gerenciar a infraestrutura do Google Cloud. Também incluímos experiências práticas de criação e gerenciamento de recursos do Google Cloud usando o Terraform.
A incorporação de machine learning em pipelines de dados aumenta a capacidade de extrair insights dessas informações. Neste curso, mostramos as várias formas de incluir essa tecnologia em pipelines de dados do Google Cloud. Para casos de pouca ou nenhuma personalização, vamos falar sobre o AutoML. Para usar recursos de machine learning mais personalizados, vamos apresentar os Notebooks e o machine learning do BigQuery (BigQuery ML). No curso, você também vai aprender sobre a produção de soluções de machine learning usando a Vertex AI.
Embora as abordagens tradicionais de uso de data lakes e data warehouses possam ser eficazes, elas têm alguns problemas, principalmente em grandes ambientes corporativos. Este curso apresenta o conceito de data lakehouse e os produtos do Google Cloud usados para criar um. Uma arquitetura de lakehouse usa fontes de dados de padrão aberto e combina os melhores atributos de data lakes e data warehouses, o que resolve muitos desses problemas.
Conclua o selo de habilidade introdutório Monitorar e gerenciar recursos do Google Cloud para demonstrar que você sabe conceder e revogar permissões do IAM; instalar agentes de monitoramento e geração de registros; criar, implantar e testar uma função do Cloud Run guiada por eventos.
Este curso ajuda estudantes a criar um plano de estudo para o exame de certificação PDE (Professional Data Engineer). É possível conferir a amplitude e o escopo dos domínios abordados no exame. Os estudantes também podem acompanhar os preparativos para o exame e criar planos de estudos individuais.
An LLM-based application can process language in a way that resembles thought. But if you want to extend its capabilities to take actions by running other functions you have coded, you will need to use function calling. This can also be referred to as tool use. Additionally, you can give a model the ability to search Google or search a data store of documents to ground its responses. In other words, to base its answers on that information. In this course, you’ll explore these concepts.
Learn a variety of strategies and techniques to engineer effective prompts for generative models
Learn how to leverage Gemini multimodal capabilities to process and generate text, images, and audio and to integrate Gemini through APIs to perform tasks such as content creation and summarization.
Neste curso, vamos conhecer o Vertex AI Studio, uma ferramenta para interagir com modelos de IA generativa, prototipar ideias comerciais e colocá-las em produção. Com a ajuda de um caso de uso imersivo, lições interessantes e um laboratório, você vai conhecer o ciclo de vida do comando à produção, além de usar o Vertex AI Studio para aplicativos multimodais do Gemini, design e engenharia de comandos e ajuste de modelos. O objetivo é permitir que você descubra todo o potencial da IA generativa nos seus projetos com o Vertex AI Studio.
Quanto maior é o uso da inteligência artificial empresarial e do machine learning, mais importante é desenvolvê-los de maneira responsável. Para muitos, falar sobre a IA responsável pode ser mais fácil, mas colocá-la em prática é um desafio. Se você tem interesse em aprender a operacionalizar a IA responsável na sua organização, este curso é para você. Nele, você vai aprender como o Google Cloud faz isso hoje, além de analisar práticas recomendadas e lições aprendidas, a fim de criar uma base para elaborar sua própria abordagem de IA responsável.
Este é um curso de microaprendizagem introdutório que busca explicar a IA responsável: o que é, qual é a importância dela e como ela é aplicada nos produtos do Google. Ele também contém os 7 princípios de IA do Google.
A Business Leader in Generative AI can articulate the capabilities of core cloud Generative AI products and services and understand how they benefit organizations. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey and how they can leverage Google Cloud's generative AI products to overcome these challenges.
O curso "Agentes de IA generativa: transforme sua organização" é o quinto e último do programa de aprendizado Gen AI Leader. Nesse curso, você aprende como as organizações podem usar agentes de IA generativa personalizados para enfrentar desafios específicos nos negócios. Você aprende na prática a construir um agente básico de IA generativa e quais são os componentes desses agentes, como modelos, ciclos de raciocínio e ferramentas.
Apps de IA generativa: transforme seu trabalho é o quarto curso do programa de aprendizado de liderança em IA Generativa. Esse curso apresenta os aplicativos de IA generativa do Google, como Gemini para Workspace e NotebookLM. Além disso, aborda conceitos como embasamento, geração aumentada de recuperação, construção de comandos eficazes e criação de fluxos de trabalho automatizados.
IA generativa: encare o cenário atual é o terceiro curso do programa de aprendizado de liderança em IA generativa. A IA generativa está mudando a forma como trabalhamos e interagimos com o mundo ao nosso redor. Mas, como líder, como aproveitar esse potencial para gerar resultados de negócios reais? Neste curso, você vai conhecer as diferentes camadas da criação de soluções de IA generativa, as ofertas do Google Cloud e os fatores a serem considerados ao selecionar uma solução.
IA generativa: conceitos básicos é o segundo curso do programa de aprendizado de liderança em IA generativa. Neste curso, você conhece os conceitos básicos da IA generativa, analisa as diferenças entre IA, ML e IA generativa, e aprende como vários tipos de dados possibilitam que a IA generativa lide com desafios de negócios. Além disso, aprende sobre as estratégias do Google Cloud para lidar com as limitações dos modelos de fundação e os principais desafios para o desenvolvimento e a implantação seguros e responsáveis da IA.
IA generativa: para além do chatbot é o primeiro curso do programa de aprendizado de liderança em IA generativa e não tem pré-requisitos. Este curso tem como objetivo ir além do conhecimento básico de chatbots para explorar o verdadeiro potencial da IA generativa para sua organização. Você aprenderá conceitos como modelos de fundação e engenharia de comando, que são cruciais para aproveitar o poder da IA generativa. O curso também aborda considerações importantes ao desenvolver uma estratégia de IA generativa de sucesso para a organização.