This workload aims to upskill Google Cloud partners to perform specific tasks associated with priority workloads. Learners will perform the tasks of migrating data from PostgreSQL to CloudSQL using the Database Migration Service.
En este curso acelerado on demand, se presentan los servicios flexibles y completos de infraestructura y plataforma que proporciona Google Cloud, con un enfoque en Compute Engine. Mediante una serie de clases por video, demostraciones y labs prácticos, los participantes pueden explorar y, también, implementar elementos de soluciones, incluidos componentes de infraestructura, como redes, máquinas virtuales y servicios de aplicaciones. Aprenderás a usar Google Cloud mediante la consola y Cloud Shell. También te familiarizarás con la función de un arquitecto de nube, enfoques para el diseño de la infraestructura y la configuración de redes virtuales con una nube privada virtual (VPC), proyectos, redes, subredes, direcciones IP, rutas y reglas de firewall.
En este curso, se te enseña a crear un modelo de generación de leyendas de imágenes con el aprendizaje profundo. Aprenderás sobre los distintos componentes de los modelos de generación de leyendas de imágenes, como el codificador y el decodificador, y cómo entrenar y evaluar tu modelo. Al final del curso, podrás crear tus propios modelos y usarlos para generar leyendas de imágenes.
En este curso, se presentan la arquitectura de transformadores y el modelo de Bidirectional Encoder Representations from Transformers (BERT). Aprenderás sobre los componentes principales de la arquitectura de transformadores, como el mecanismo de autoatención, y cómo se usa para crear el modelo BERT. También aprenderás sobre las diferentes tareas para las que puede usarse BERT, como la clasificación de texto, la respuesta de preguntas y la inferencia de lenguaje natural. Tardarás aproximadamente 45 minutos en completar este curso.
This course will help ML Engineers, Developers, and Data Scientists implement Large Language Models for Generative AI use cases with Vertex AI. The first two modules of this course contain links to videos and prerequisite course materials that will build your knowledge foundation in Generative AI. Please do not skip these modules. The advanced modules in this course assume you have completed these earlier modules.
El curso Explorador de IA generativa - Vertex AI es una colección de labs sobre cómo usar la IA generativa en Google Cloud. A través de los labs, aprenderás sobre cómo usar los modelos de la familia de APIs de PaLM de Vertex AI, incluidos text-bison, chat-bison y textembedding-gecko. También aprenderás sobre el diseño de instrucciones, las prácticas recomendadas y cómo se puede usar para la ideación, la clasificación, la extracción y el resumen de texto, y mucho más. También aprenderás a ajustar un modelo de base mediante el entrenamiento personalizado de Vertex AI y, luego, implementarlo en un extremo de Vertex AI.
Este curso es una introducción al mecanismo de atención, una potente técnica que permite a las redes neuronales enfocarse en partes específicas de una secuencia de entrada. Sabrás cómo funciona la atención y cómo puede utilizarse para mejorar el rendimiento de diversas tareas de aprendizaje automático, como la traducción automática, el resumen de textos y la respuesta a preguntas.
Completa los cursos Introduction to Generative AI, Introduction to Large Language Models e Introduction to Responsible AI para obtener una insignia de habilidad. Aprueba el cuestionario final para demostrar que entiendes los conceptos básicos sobre la IA generativa. Una insignia de habilidad es una insignia digital que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma. Para compartir tu insignia de habilidad, establece tu perfil como público y agrega la insignia a tu perfil de redes sociales.
En este curso, se presenta Vertex AI Studio, una herramienta para interactuar con modelos de IA generativa, crear prototipos de ideas de negocio y llevarlas a producción. A través de un caso de uso envolvente, lecciones atractivas y un lab práctico, explorarás el ciclo de vida desde la instrucción hasta el producto y aprenderás cómo aprovechar Vertex AI Studio para aplicaciones multimodales de Gemini, diseño de instrucciones, ingeniería de instrucciones y ajuste de modelos. El objetivo es permitirte desbloquear el potencial de la IA generativa en tus proyectos con Vertex AI Studio.
En este curso, se brinda un resumen de la arquitectura de codificador-decodificador, una arquitectura de aprendizaje automático importante y potente para realizar tareas de secuencia por secuencia, como las de traducción automática, resúmenes de texto y respuestas a preguntas. Aprenderás sobre los componentes principales de la arquitectura de codificador-decodificador y cómo entrenar y entregar estos modelos. En la explicación del lab, programarás una implementación sencilla de la arquitectura de codificador-decodificador en TensorFlow para generar poemas desde un comienzo.
Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA responsable, por qué es importante y cómo la implementa Google en sus productos. También se presentan los 7 principios de la IA de Google.
Este es un curso introductorio de microaprendizaje en el que se explora qué son los modelos de lenguaje grandes (LLM), sus casos de uso y cómo se puede utilizar el ajuste de instrucciones para mejorar el rendimiento de los LLM. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.
En este curso, se presenta una introducción a los modelos de difusión: una familia de modelos de aprendizaje automático que demostraron ser muy prometedores en el área de la generación de imágenes. Los modelos de difusión se inspiran en la física, específicamente, en la termodinámica. En los últimos años, los modelos de difusión se han vuelto populares tanto en investigaciones como en la industria. Los modelos de difusión respaldan muchos de los modelos de generación de imágenes y herramientas vanguardistas de Google Cloud. En este curso, se presenta la teoría detrás de los modelos de difusión y cómo entrenarlos y, luego, implementarlos en Vertex AI.
Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA generativa, cómo se utiliza y en qué se diferencia de los métodos de aprendizaje automático tradicionales. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.
This course provides comprehensive skills on VM migration, from the initial assessment through the final implementation through presentations, demonstrations, and whiteboard session.
Este es el segundo curso de la serie de cursos Data to Insights. Aquí, veremos cómo transferir nuevos conjuntos de datos externos a BigQuery y visualizarlos con Looker Studio. También analizaremos los conceptos intermedios de SQL, como las operaciones JOIN y UNION de varias tablas, que te permitirán analizar datos de varias fuentes. Nota: Incluso si tienes experiencia en SQL, hay aspectos específicos de BigQuery (como la gestión del almacenamiento en caché de las consultas y los comodines de tablas) que pueden ser nuevos para ti. Después de completar el curso, inscríbete en el curso Achieving Advanced Insights with BigQuery.
Welcome to Cloud Composer, where we discuss how to orchestrate data lake workflows with Cloud Composer.
En este curso, veremos cuáles son los desafíos comunes a los que se enfrentan los analistas de datos y cómo resolverlos con las herramientas de macrodatos en Google Cloud. Aprenderás algunos conceptos de SQL y adquirirás conocimientos sobre el uso de BigQuery y Dataprep para analizar y transformar conjuntos de datos. Este es el primer curso de la serie From Data to Insights with Google Cloud. Después de completarlo, inscríbete en el curso Creating New BigQuery Datasets and Visualizing Insights.
This quest offers hands-on practice with Cloud Data Fusion, a cloud-native, code-free, data integration platform. ETL Developers, Data Engineers and Analysts can greatly benefit from the pre-built transformations and connectors to build and deploy their pipelines without worrying about writing code. This Quest starts with a quickstart lab that familiarises learners with the Cloud Data Fusion UI. Learners then get to try running batch and realtime pipelines as well as using the built-in Wrangler plugin to perform some interesting transformations on data.
En esta Quest de nivel básico, adquirirá experiencia práctica en las herramientas y los servicios fundamentales de Google Cloud Platform. GCP Essentials es la primera Quest recomendada para el estudiante de Google Cloud. Ingresará con poco o ningún conocimiento previo sobre la nube, y saldrá con experiencia práctica que podrá aplicar a su primer proyecto de GCP. Desde la escritura de comandos de Cloud Shell y la implementación de su primera máquina virtual hasta la ejecución de aplicaciones en Kubernetes Engine o mediante el balanceo de cargas, GCP Essentials es una excelente introducción a las funciones básicas de la plataforma. En los videos de 1 minuto, se le explicarán los conceptos clave de cada lab.
This course explores how to leverage Looker to create data experiences and gain insights with modern business intelligence (BI) and reporting.
This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.
This course continues to explore the implementation of data load and transformation pipelines for a BigQuery Data Warehouse using Cloud Data Fusion.
Welcome to Cloud Data Fusion, where we discuss how to use Cloud Data Fusion to build complex data pipelines.
This advanced-level Quest builds on its predecessor Quest, and offers hands-on practice on the more advanced data integration features available in Cloud Data Fusion, while sharing best practices to build more robust, reusable, dynamic pipelines. Learners get to try out the data lineage feature as well to derive interesting insights into their data’s history.
In this course, you learn how to do the kind of data exploration and analysis in Looker that would formerly be done primarily by SQL developers or analysts. Upon completion of this course, you will be able to leverage Looker's modern analytics platform to find and explore relevant content in your organization’s Looker instance, ask questions of your data, create new metrics as needed, and build and share visualizations and dashboards to facilitate data-driven decision making.
Este curso ayuda a los participantes a crear un plan de estudio para el examen de certificación de PDE (Professional Data Engineer). Los alumnos conocerán la amplitud y el alcance de los dominios que se incluyen en el examen. Además, evaluarán su nivel de preparación para el examen y crearán un plan de estudio personal.
Este curso corresponde a la 1ª parte de una serie de 3 cursos llamada Procesamiento de datos sin servidores con Dataflow. Para comenzar, en el primer curso haremos un repaso de qué es Apache Beam y cómo se relaciona con Dataflow. Luego, hablaremos sobre la visión de Apache Beam y los beneficios que ofrece su framework de portabilidad. Dicho framework hace posible que un desarrollador pueda usar su lenguaje de programación favorito con su backend de ejecución preferido. Después, le mostraremos cómo Dataflow le permite separar el procesamiento y el almacenamiento y, a la vez, ahorrar dinero. También le explicaremos cómo las herramientas de identidad, acceso y administración interactúan con sus canalizaciones de Dataflow. Por último, veremos cómo implementar el modelo de seguridad adecuado en Dataflow según su caso de uso.
El procesamiento de datos de transmisión es cada vez más popular, puesto que permite a las empresas obtener métricas en tiempo real sobre las operaciones comerciales. Este curso aborda cómo crear canalizaciones de datos de transmisión en Google Cloud. Pub/Sub se describe para manejar los datos de transmisión entrantes. El curso también aborda cómo aplicar agregaciones y transformaciones a los datos de transmisión con Dataflow y cómo almacenar los registros procesados en BigQuery o Bigtable para analizarlos. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos de transmisión en Google Cloud con QwikLabs.
Las canalizaciones de datos suelen realizarse según uno de los paradigmas extracción y carga (EL); extracción, carga y transformación (ELT), o extracción, transformación y carga (ETL). En este curso, abordaremos qué paradigma se debe utilizar para los datos por lotes y cuándo corresponde usarlo. Además, veremos varias tecnologías de Google Cloud para la transformación de datos, incluidos BigQuery, la ejecución de Spark en Dataproc, grafos de canalización en Cloud Data Fusion y procesamiento de datos sin servidores en Dataflow. Los estudiantes obtienen experiencia práctica en la compilación de componentes de canalizaciones de datos en Google Cloud con Qwiklabs.
Los dos componentes clave de cualquier canalización de datos son los data lakes y los almacenes de datos. En este curso, se destacan los casos de uso de cada tipo de almacenamiento y se analizan en profundidad las soluciones de data lakes y almacenes disponibles en Google Cloud con detalles técnicos. Además, en este curso, se describen el rol del ingeniero en datos, los beneficios de las canalizaciones de datos exitosas para las operaciones comerciales y por qué la ingeniería de datos debe realizarse en un entorno de nube. Este el primer curso de la serie Ingeniería de datos en Google Cloud. Después de completar este curso, inscríbete en el curso Creación de flujos de procesamiento de datos por lotes en Google Cloud.
La incorporación del aprendizaje automático en las canalizaciones de datos aumenta la capacidad para extraer estadísticas de los datos. En este curso, veremos formas de incluir el aprendizaje automático en las canalizaciones de datos en Google Cloud. Para una personalización escasa o nula, en el curso se aborda AutoML. Para obtener más capacidades de aprendizaje automático a medida, el curso presenta Notebooks y BigQuery Machine Learning (BigQuery ML). Además, en este curso se aborda cómo llevar a producción soluciones de aprendizaje automático con Vertex AI.
Obtén la insignia de habilidad intermedia Ingeniería de datos para crear modelos predictivos con BigQuery ML y demuestra tus capacidades para crear canalizaciones de transformación de datos en BigQuery con Dataprep de Trifacta; usar Cloud Storage, Dataflow y BigQuery para crear flujos de trabajo de extracción, transformación y carga (ETL), y crear modelos de aprendizaje automático con BigQuery ML.
Completa la insignia de habilidad introductoria Prepara datos para las APIs de AA en Google Cloud y demuestra tus habilidades para realizar las siguientes actividades: limpiar datos con Dataprep de Trifacta, ejecutar canalizaciones de datos en Dataflow, crear clústeres y ejecutar trabajos de Apache Spark en Dataproc y llamar a APIs de AA, como la API de Cloud Natural Language, la API de Google Cloud Speech-to-Text y la API de Video Intelligence.
Completa la insignia de habilidad introductoria Implementa Cloud Load Balancing para Compute Engine y demuestra tus habilidades para realizar las siguientes actividades: crear y, luego, implementar máquinas virtuales en Compute Engine, y configurar balanceadores de cargas de red y de aplicaciones.
En este curso, aprenderás sobre los productos y servicios de macrodatos y aprendizaje automático de Google Cloud involucrados en el ciclo de vida de datos a IA. También explorarás los procesos, los desafíos y los beneficios de crear una canalización de macrodatos y modelos de aprendizaje automático con Vertex AI en Google Cloud.