Christina Sebastian
Date d'abonnement : 2022
Ligue d'Argent
13610 points
Date d'abonnement : 2022
Bien que les approches traditionnelles utilisant des lacs de données et des entrepôts de données puissent être efficaces, elles présentent des inconvénients, en particulier dans les grands environnements d'entreprise. Ce cours présente le concept de data lakehouse et les produits Google Cloud utilisés pour en créer un. Une architecture de lakehouse utilise des sources de données basées sur des normes ouvertes et combine les meilleures fonctionnalités des lacs et des entrepôts de données, ce qui permet de pallier de nombreuses lacunes.
Ce cours présente les produits et services Google Cloud pour le big data et le machine learning compatibles avec le cycle de vie "des données à l'IA". Il explore les processus, défis et avantages liés à la création d'un pipeline de big data et de modèles de machine learning avec Vertex AI sur Google Cloud.
Ce cours a pour objectif d'aider les participants à créer un plan de formation pour l'examen de certification Professional Data Engineer. Les participants découvriront l'étendue et le champ d'application des domaines abordés lors de l'examen, puis évalueront leur niveau de préparation à l'examen et créeront leur propre plan de formation.