加入 登录

Yogesh Bhowate

成为会员时间:2023

黄金联赛

23987 积分
生成式 AI 代理:實現組織轉型 Earned Sep 18, 2025 EDT
生成式 AI 應用程式:徹底改變工作方式 Earned Sep 15, 2025 EDT
生成式 AI:掌握幕後技術與環境 Earned Sep 15, 2025 EDT
生成式 AI:瞭解基礎概念 Earned Sep 12, 2025 EDT
生成式 AI:不只是聊天機器人 Earned Sep 12, 2025 EDT
使用 BigQuery ML 為預測模型進行資料工程 Earned Sep 6, 2024 EDT
透過 BigQuery 建構資料倉儲 Earned Sep 6, 2024 EDT
在 Google Cloud 為機器學習 API 準備資料 Earned Sep 6, 2024 EDT
Build Data Lakes and Data Warehouses on Google Cloud Earned Aug 12, 2024 EDT
Preparing for your Professional Data Engineer Journey Earned Jun 28, 2024 EDT
運用 Cloud Run 開發無伺服器應用程式 Earned Jun 27, 2024 EDT
開始使用 Google Kubernetes Engine Earned Jan 31, 2024 EST
Application Development with Cloud Run Earned Jan 22, 2024 EST
App Deployment, Debugging, and Performance Earned Jan 2, 2024 EST
Getting Started With Application Development Earned Dec 7, 2023 EST
Google Cloud 基礎知識:核心基礎架構 Earned Dec 5, 2023 EST

「生成式 AI 代理:實現組織轉型」是 Generative AI Leader 學習路徑的第五門課,也是最後一門。本課程將探討組織如何運用自訂生成式 AI 代理,解決特定的業務難題。您將動手練習建構基本的生成式 AI 代理,同時熟悉這類代理的各種元件,例如模型、推論迴圈和工具。

了解详情

「生成式 AI 應用程式:徹底改變工作方式」是 Generative AI Leader 學習路徑的第四門課程。本課程將介紹 Google 的生成式 AI 應用程式,例如 Gemini for Workspace 和NotebookLM,也會引導您瞭解各種概念,像是建立基準、檢索增強生成、建構有效的提示詞,以及打造自動化工作流程等。

了解详情

「生成式 AI:掌握幕後技術與環境」是 Generative AI Leader 學習路徑的第三門課程。生成式 AI 正在改變我們的工作方式,以及我們如何與周遭的世界互動。身為領導者,您要如何駕馭 AI 強大的功能,創造實際業務成果?在本課程中,您將認識建構生成式 AI 解決方案時的各個層面、Google Cloud 產品,以及選擇解決方案時應考量的因素。

了解详情

「生成式 AI: 瞭解基礎概念」是 Generative AI Leader 學習路徑的第二門課程。在本課程中,您將瞭解 AI、機器學習和生成式 AI 的差異,以及各種資料類型如何協助生成式 AI 解決業務難題,進而掌握生成式 AI 的基礎概念。您還能深入瞭解 Google Cloud 應對基礎 模型限制的策略,以及開發、部署安全且負責任的 AI 技術時面臨的主要挑戰。

了解详情

「生成式 AI:不只是聊天機器人」是 Generative AI Leader 學習路徑的第一門課程,沒有任何修課條件。本課程將帶您超越基本知識,進一步瞭解聊天機器人,探索如何在組織中充分發揮生成式 AI 的潛力。您將瞭解基礎模型和提示工程等概念,掌握善用生成式AI 的關鍵。本課程也會帶您瞭解擬定生成式 AI 策略時的多種重要考量,協助您為組織擬定出成功的策略。

了解详情

完成使用 BigQuery ML 為預測模型進行資料工程技能徽章中階課程, 即可證明自己具備下列知識與技能:運用 Dataprep by Trifacta 建構連至 BigQuery 的資料轉換 pipeline; 使用 Cloud Storage、Dataflow 和 BigQuery 建構「擷取、轉換及載入」(ETL) 工作負載, 以及使用 BigQuery ML 建構機器學習模型。

了解详情

完成 透過 BigQuery 建構資料倉儲 技能徽章中階課程,即可證明您具備下列技能: 彙整資料以建立新資料表、排解彙整作業問題、利用聯集附加資料、建立依日期分區的資料表, 以及在 BigQuery 使用 JSON、陣列和結構體。

了解详情

完成 在 Google Cloud 為機器學習 API 準備資料 技能徽章入門課程,即可證明您具備下列技能: 使用 Dataprep by Trifacta 清理資料、在 Dataflow 執行資料管道、在 Dataproc 建立叢集和執行 Apache Spark 工作,以及呼叫機器學習 API,包含 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。

了解详情

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

了解详情

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

了解详情

完成 運用 Cloud Run 開發無伺服器應用程式 技能徽章中階課程, 即可證明您具備下列技能:整合 Cloud Run 和 Cloud Storage 以管理資料、 使用 Cloud Run 和 Pub/Sub 架構可復原的非同步系統、 使用 Cloud Run 建構 REST API 閘道,以及在 Cloud Run 建構及部署服務。

了解详情

歡迎參加「開始使用 Google Kubernetes Engine」課程。Kubernetes 是位於應用程式和硬體基礎架構之間的軟體層。如果您對這項技術感興趣,這堂課程可以滿足您的需求。有了 Google Kubernetes Engine,您就能在 Google Cloud 中以代管服務的形式使用 Kubernetes。 本課程的目標在於介紹 Google Kubernetes Engine (常簡稱為 GKE) 的基本概念,以及如何將應用程式容器化,以便在 Google Cloud 中執行。課程首先會初步介紹 Google Cloud,隨後簡介容器、Kubernetes、Kubernetes 架構和 Kubernetes 作業。

了解详情

This course introduces you to fundamentals, practices, capabilities and tools applicable to modern cloud-native application development using Google Cloud Run. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to on Google Cloud using Cloud Run.design, implement, deploy, secure, manage, and scale applications

了解详情

In this course, application developers learn how to design and develop cloud-native applications that seamlessly integrate components from the Google Cloud ecosystem. Through a combination of presentations, demos, and hands-on labs, participants learn how to create repeatable deployments by treating infrastructure as code, choose the appropriate application execution environment for an application, and monitor application performance. Completing one version of each lab is required. Each lab is available in Node.js. In most cases, the same labs are also provided in Python or Java. You may complete each lab in whichever language you prefer.

了解详情

In this course, application developers learn how to design and develop cloud-native applications that seamlessly integrate managed services from Google Cloud. Through a combination of presentations, demos, and hands-on labs, participants learn how to apply best practices for application development and use the appropriate Google Cloud storage services for object storage, relational data, caching, and analytics. Completing one version of each lab is required. Each lab is available in Node.js. In most cases, the same labs are also provided in Python or Java. You may complete each lab in whichever language you prefer. This is the first course of the Developing Applications with Google Cloud series. After completing this course, enroll in the Securing and Integrating Components of your Application course.

了解详情

「Google Cloud 基礎知識:核心基礎架構」介紹了在使用 Google Cloud 時會遇到的重要概念和術語。本課程會透過影片和實作實驗室,介紹並比較 Google Cloud 的多種運算和儲存服務,同時提供重要的資源和政策管理工具。

了解详情